Primality Tests

Most of our more-sophisticated primality checking will rely on two results—the Rabin-Miller test and the Pocklington test. The former is used as a “gatekeeper,” since it is only capable of proving compositeness, while the second is used as a final check, since it is more difficult to verify.

Theorem 1 (Rabin-Miller): If \(p = t2^s + 1 \) is prime, where \(t \) is odd (i.e., \(s \) is maximal), and \(2 \leq a \leq p - 1 \), then either \(a^t \equiv 1 \pmod{p} \) or \(a^{t2^r} \equiv -1 \pmod{p} \) for some \(0 \leq r \leq s - 1 \).

Proof: If \(p \) is prime and \(2 \leq a \leq p - 1 \), then Fermat’s Little Theorem implies that \(a^{p-1} \equiv 1 \pmod{p} \). Furthermore, if \(p \) is prime, then the ring of integers modulo \(p \) is a field, which implies that 1 has at most two square roots, namely 1 and \(-1\) (which are equal if \(p = 2 \)). Consider, then, the sequence (modulo \(p \))

\[
a^{t2^s}, a^{t2^{s-1}}, a^{t2^{s-2}}, \ldots, a^t
\]

Each term in this sequence is one of the square roots of the preceding term, and the first term is 1. There are, then, two possibilities: either the whole sequence consists of 1’s, or some element of the sequence after the first is a \(-1\). These are precisely the two possibilities in the conclusion of the theorem. **Q.E.D.**

We also note (proof later) that a composite \(p \) will pass this test for at most \(1/4 \) of the possible \(a \) values—a composite \(p \) that passes this test for the base \(a \) is said to be a *strong pseudoprime to the base* \(a \). We also note that performing a Rabin-Miller test for a particular \(a \) requires only a single modular exponentiation, followed by repeated squaring (up to \(s - 1 \) times). It is also true that calculation of \(s \) and \(t \) is trivial on a binary computer, since \(s \) is simply the number of trailing 0 bits in \(p - 1 \) and \(t \) is the result of shifting \(p - 1 \) right by \(s \) bits.

Theorem 2 (Pocklington): If \(p = q^kr + 1 \), \(q \) is prime, \(q \nmid r \), and there exists \(2 \leq a \leq p - 1 \) such that \(a^{p-1} \equiv 1 \pmod{p} \) and \((a^{(p-1)/q} - 1, p) = 1\), then every prime factor of \(p \) is congruent to 1 modulo \(q^k \).

Proof: Let \(s \) be a prime factor of \(p \) and let \(m \) be the multiplicative order of \(a \) modulo \(s \) (i.e., the smallest positive integer such that \(a^m \equiv 1 \pmod{s} \)). The first condition on \(a \) ensures that \(m|p-1 = q^k r \), while the second ensures that \(m \nmid (p-1)/q = q^{k-1}r \). These two imply that \(q^k|m \). Now, Fermat’s Little Theorem implies that \(m|s-1 \), hence \(q^k|s-1 \), or \(s \equiv 1 \pmod{q^k} \). **Q.E.D.**

A couple of useful corollaries -

Corollary 3: Let \(p, q, r, a \) be as in **Theorem 2**. If, in addition, \(q^k > r \) then \(p \) is prime.

Proof: Using **Theorem 2**, we see that all prime factors of \(p \) are greater than \(q^k > \sqrt{p} \). Hence, \(p \) is prime. **Q.E.D.**
Corollary 4: Let \(p, q, r, a \) be as in Theorem 2. If, in addition, \(q^{2k} > r \) then either \(p \) is prime or is the product of two primes congruent to 1 modulo \(q^k \).

Proof: Using Theorem 2, we see that all prime factors of \(p \) are greater than \(q^k > \sqrt[3]{p} \). Hence, there are at most 2 of them and they are both congruent to 1 modulo \(q^k \). Q.E.D.

Corollary 5: Let \(p, q, r, a \) be as in Corollary 4. Assume that \(p \) and \(q \) are both odd.

Let \(r = bq^k + c \) where \(0 \leq c < q^k \). If \(b \) is not a multiple of 4 or \(c^2 - 4b \) is not a square, then \(p \) is prime.

Proof: We only need to rule out the case where \(p = p_1p_2, p_i \) prime, \(p_i = k_iq^k + 1 \). First, observe that, since \(p_1p_2 = p \), we have \(k_1k_2 < q^k \). Furthermore, each \(k_i \) must be even and nonzero. Hence, we have \(2 \leq k_i \leq (q^k - 1)/2 < q^k \). Furthermore, \(k_1 + k_2 \leq 2 + (q^k - 1)/2 < q^k \), since the sum of two real numbers of constant product is a maximum when one is as small as possible (the special case when \(q = 3, k = 1 \) is easily dealt with, since no two even positive integers have product less than 3). Thus, we see that

\[
(k_1q^k + 1)(k_2q^k + 1) = k_1k_2q^{2k} + (k_1 + k_2)q^k + 1
= bq^{2k} + cq^k + 1
\]

implies that \(k_1k_2 = b, k_1 + k_2 = c \). Since the \(k_i \) are both even, \(b \) must be a multiple of 4. Furthermore, \(c^2 - 4b = (k_1 - k_2)^2 \), so \(c^2 - 4b \) must be a square. Since one or the other of these was assumed to be false, the other conclusion of Corollary 4 must hold, namely, \(p \) must be prime. Q.E.D.

To prove that a composite \(p \) is a strong pseudoprime to at most 25% of the possible bases, we need two lemmas:

Lemma 6: In a cyclic group of order \(n \), there are \((n, k)\) distinct elements \(x \) that satisfy \(x^k = 1 \).

Proof: Let \(d = (n, k) \) and let the cyclic group be generated by \(g \), so that the group is \(\{g, g^2, g^3, \ldots, g^n = 1\} \). An element \(g^j \) satisfies the equation iff \(n|(jk) \) iff \((n/d)|(jk/d) \) iff \(j \) is a multiple of \(n/d \) since \(n/d \) and \(k/d \) are relatively prime. There are \(d \) such values \(1 \leq j \leq n \). Q.E.D.

Lemma 7: Let \(p = t^{2^s} + 1 \) be prime with \(t \) odd. Then, the number of \(1 \leq x \leq p - 1 \) that satisfy \(x^{2^r} \equiv -1 \pmod{p} \) is 0 if \(r \geq s \) and \(2^r(u, t) \) otherwise.

Proof: Let \(g \) be a generator for the multiplicative group of nonzero elements modulo \(p \) and let \(x = g^j \). Then, the number of distinct \(x \) that satisfy the condition is the same as the number of distinct exponents \(j \) that satisfy

\[
ju2^s \equiv (p - 1)/2 \pmod{p - 1} \equiv t^{2^s - 1} \pmod{t2^s}
\]

Clearly, if \(r \geq s \), this cannot occur since the left-hand side and the modulus both contain at least \(s \) factors of 2, while the right-hand side only has \(s - 1 \). On the other hand,
if \(r < s \), denote \((u, t)\) by \(d\). In this case, there is at least one solution since \((u/d)\) is relatively prime to \((t/d)^{2^{s-r}}\). This implies that there is a \(1 \leq k < (t/d)^{2^{s-r}}\) which is the multiplicative inverse of \((u/d)\) modulo \((t/d)^{2^{s-r}}\). Now, let \(j = k(t/d)^{2^{s-r}-1}\). Observe that \(j(u/d) \equiv (t/d)^{2^{s-r}-1}\) (mod \((t/d)^{2^{s-r}}\)) which implies that

\[
j u^2r \equiv t 2^{s-1} \pmod{t 2^s}
\]

Once we have one solution, we can easily count the others using Lemma 6, since all solutions will be a product of the one fixed solution and a solution of \(y^{u2^r} \equiv 1 \pmod{p}\). Thus, the total number of solutions is \((t 2^s, u^2r) = 2^r(u, t)\). Q.E.D.

Theorem 8: If \(p\) is odd and composite, it is a strong pseudoprime to at most \((p-1)/4\) bases \(0 < a < n\).

Proof: We will break this up into 3 cases –

Case I: \(p\) is divisible by the square of an odd prime \(q\). Suppose \(p\) is a strong pseudoprime relative to \(0 < a < p\), and \(q^k | p \) (\(k\) maximal), \(k \geq 2\). Then, \(a^{p-1} \equiv 1 \pmod{q^k}\). The size of the group in question, the multiplicative group of the integers modulo \(q^k\) is \(\varphi(q^k) = q^{k-1}(q-1)\). This tells us that, among the \(a\) less than \(q^k\), there are \(d = (q^{k-1}(q-1), p-1)\) solutions. Now, \(q\) is prime and \(q | p \) so \(q \nmid p-1\). Therefore, \(d | q-1\). Using the Chinese Remainder Theorem, then, we see that the number of such \(a\) is at most \((q-1)p/q^k\) and thus the proportion of solutions is at most

\[
\frac{(q-1)p}{q^k(p-1)} \leq \frac{(q-1)p}{q^k(p-(p/q^k))} \\
\leq \frac{(q-1)p}{pq^k-p} \\
= \frac{q-1}{q^k-1} \\
\leq \frac{q-1}{q^2-1} \\
= \frac{1}{1+q} \leq 1/4
\]

Note that this case does not really use the full strength of the Rabin-Miller test, only the Fermat portion.

Case II: \(p\) is the product of two distinct odd primes, \(p = q_1q_2\). Let \(q_1 = t_1 2^{s_1} + 1\) and \(q_2 = t_2 2^{s_2} + 1\) \((t_i \text{ odd})\). Suppose, without loss of generality, that \(s_1 \leq s_2\). Note that \(s_1 \leq s\) since

\[
t 2^s = p - 1 = (q_1 - 1)(q_2 - 1) + (q_1 - 1) + (q_2 - 1) = t_1 2^{s_1} t_2 2^{s_2} + t_1 2^{s_1} + t_2 2^{s_2} = 2^{s_1} (t_1 t_2 s_2 + t_1 + t_2 2^{s_2-s_1})
\]

The Chinese Remainder Theorem then lets us reinterpret the strong pseudoprime condition: if \(p\) is a strong pseudoprime to base \(a\), then either \(a^t \equiv 1 \pmod{q_1}\) and \(a^t \equiv 1 \pmod{q_2}\)
(mod q_2) or, for some $0 \leq r < s$, $a^{t_2^r} \equiv -1 \pmod{q_1}$ and $a^{t_2^r} \equiv -1 \pmod{q_2}$. Using Lemma 6, we see that the first condition holds for

\[(t, q_1 - 1)(t, q_2 - 1) = (t, t_1 2^{s_1})(t, t_2 2^{s_2})
= (t, t_1)(t, t_2)
\leq t_2 t_2\]

Next, Lemma 7 implies that, for $0 \leq r < s_1 \leq s_2$, that the second condition has

\[2^r (t, t_1)2^r (t, t_2) \leq 4^r t_1 t_2\]
solutions (there are none if $r \geq s_1$).

Thus, the total number of solutions is at most

\[t_1 t_2 (2 + 4 + 4^2 + \cdots + 4^{s_1-1})\]

Furthermore, $p - 1 > (q_1 - 1)(q_2 - 1) = t_1 t_2 2^{s_1 + s_2}$ so the proportion of solutions is at most

\[\frac{1 + \frac{4^{s_1-1}}{4-1}}{2^{s_1 + s_2}}\]

If $s_1 < s_2$, then this is at most

\[2^{-2s_1-1} \left(\frac{2}{3} + \frac{4^{s_1}}{3}\right) \leq 2^{-3} \frac{2}{3} + \frac{1}{6} = \frac{1}{4}\]

If $s_1 = s_2$, then we must be a bit more careful. We claim that, in this subcase, at least one of the t_i is not a factor of t. For, if $t_1 | t$, then

\[p - 1 = t2^s
= q_1 q_2 - 1
= (q_1 - 1)q_2 + (q_2 - 1)
= t_1 2^{s_1} q_2 + t_2 2^{s_2}
= 2^{s_1} (t_1 q_2 + t_2)\]

so that $0 \equiv t_2 2^{s_1} \pmod{t_1}$, i.e. $t_1 | t_2$. Similarly, if $t_2 | t$, then $t_2 | t_1$. Thus, if both t_i are factors of t, then they are equal and hence $q_1 = q_2$, a contradiction. So, at least one of the (t_i, t) is strictly less than t_i, hence less than t by at least a factor of 3. Recall that, in our counting of solutions, we replaced $(t_1, t)(t_2, t)$ by $t_1 t_2$. This argument shows that this was overly generous by at least a factor of 3, so we may now replace $t_1 t_2$ by $t_1 t_2/3$. This gives us the upper bound on the proportion of solutions of

\[2^{-2s_1} \left(\frac{2}{3} + \frac{4^{s_1}}{3}\right) \leq \frac{1}{18} + \frac{1}{9} = \frac{1}{6} < \frac{1}{4}\]
Case III: p is the product of three or more distinct primes, $p = q_1 q_2 \ldots q_n$ ($n \geq 3$). Proceed as in Case II and let $q_i = t_i 2^{s_i} + 1$ with t_i odd. Assume, without loss of generality that $s_i \leq s_{i+1}$. Arguing as before, we see that the proportion of solutions is at most

$$2^{-s_1 - s_2 - \cdots - s_n} \left(1 + \frac{2^{ns_1} - 1}{2^n - 1} \right) \leq 2^{-ns_1} \left(\frac{2^n - 2}{2^n - 1} + \frac{2^{ns_1}}{2^n - 1} \right)$$

$$= 2^{-ns_1} \frac{2^n - 2}{2^n - 1} + \frac{1}{2^n - 1}$$

$$\leq 2^{-n} \frac{2^n - 2}{2^n - 1} + \frac{1}{2^n - 1}$$

$$= \frac{2 - 2^{1-n}}{2^n - 1}$$

$$= 2^{1-n}$$

$$\leq \frac{1}{4}$$

since $n \geq 3$.

Q.E.D.
Mihailescu’s Prime-Generation Algorithm

To generate a provable prime p of n bits, Mihailescu has (more or less) proposed the following algorithm which combines a number of the above results:

Step 0: if $n \leq 16$, return an appropriately-size prime from a list of the 16-bit primes.

Step 1: Recursively generate a prime q of size at least $\lceil n/3 \rceil$.

Step 2: Set up a sieve with a start value of at least $\lceil (2^n - 1)/(2q) \rceil$ and a size of at least $10n$.

Step 3: For all 16-bit primes r, remove from the sieve all values t such that $r|2qt + 1$. Note that this necessitates calculating $(2q)^{-1} \mod r$.

Step 4: If the sieve is empty, go back to Step 2 (set up a nonoverlapping sieve). Otherwise, for each sieve output t, perform a base-2 Rabin-Miller test on $p = 2qt + 1$. If it fails, go back to Step 4. If it passes, go on to Step 5.

Step 5: Divide $2t$ by q, and call the quotient b and the remainder c. If b is a multiple of 4, and $c^2 - 4b$ is a square, go back to Step 4. (For somewhat subtle number-theoretic reasons, it’s really only necessary to check whether or not $c^2 - 4b$ is a square – if it is, b is necessarily a multiple of 4).

Step 6: Let a denote a small prime (start with 2, continue to L). If you have reached L, go back to Step 4. Let d denote $a^{2t} \mod p$. If $d = 1$, go back to Step 6 (next small prime). Otherwise, calculate $d^q \mod p$. If this is not 1, go back to Step 4. Calculate $(d - 1, p)$. If this is not 1, go back to Step 4. If it is 1, then p is prime. Return it, and terminate the algorithm.

Note that Step 1 and Step 2 may be randomized so that different primes are produced each time.

A prime certificate is a list containing all information necessary for a third party to verify the calculations to prove primality. In this case, a certificate for p would be:

1) p itself,
2) q,
3) a prime certificate for q,
4) if b is not a multiple of 4, then b, else $c^2 - 4b$ (to verify it’s not a square),
5) the a value that finally worked in Step 6.