In these notes, I’ll show that the lift of the map $f(w) = 1/w$ in the Riemann sphere is the reflection in the xy-plane.

Let S denote the unit sphere in 3-space,

$$S = \{(x, y, z)|x^2 + y^2 + z^2 = 1\}$$

and let \mathbb{C}^* denote the Riemann sphere,

$$\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$$

Then, stereographic projection from S to \mathbb{C}^* is defined by setting $g(x, y, z)$ equal to the point where the line from $(0,0,1)$ to (x, y, z) intersects the plane $z = 0$ (regarding the plane $z = 0$ as the complex plane \mathbb{C}). This is defined for all points on S except $(0,0,1)$. If we then define $g(0,0,1)$ to be ∞, then we have a map $g : S \to \mathbb{C}^*$. When $z \neq 1$, we may use similar triangles in the unique plane containing $(0,0,0)$, $(0,0,1)$ and (x,y,z), and easily see that g is given by the formula

$$g(x,y,z) = \begin{cases}
\frac{x+iy}{1-z} & \text{if } z \neq 1 \\
\infty & \text{if } z = 1
\end{cases}$$

We need to also work out the inverse map, g^{-1}. Denote an arbitrary point in \mathbb{C} by $u + iv$, and let (x,y,z) be a point in S such that $g(x,y,z) = u + iv$. Assume for the moment that such a point exists and we will derive expressions for x, y and z in terms of u and v. At that point, we will know that (x,y,z) exists whenever the expressions are defined (which will turn out to be everywhere).

First, note that the similar triangles argument alluded to above, combined with the fact that $x^2 + y^2 + z^2 = 1$ gives us

$$u^2 + v^2 = \frac{1+z}{1-z}$$

or

$$z = \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}$$

whence we see that

$$1 - z = \frac{2}{u^2 + v^2 + 1}$$

so that

$$x = \frac{2u}{u^2 + v^2 + 1}$$

$$y = \frac{2v}{u^2 + v^2 + 1}$$

$$z = \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}$$

hence,

$$g^{-1}(u + iv) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)$$
or, writing it in terms of a complex number w,

$$g^{-1}(w) = \left(\frac{2\text{Re}(w)}{|w|^2 + 1}, \frac{2\text{Im}(w)}{|w|^2 + 1}, |w|^2 - 1 \right)$$

It is worth checking that

$$x^2 + y^2 + z^2 = \frac{4u^2 + 4v^2 + (u^2 + v^2 - 1)^2}{(u^2 + v^2 + 1)^2}$$

$$= \frac{4(u^2 + v^2) + (u^2 + v^2)^2 - 2(u^2 + v^2) + 1}{(u^2 + v^2 + 1)^2}$$

$$= \frac{(u^2 + v^2)^2 + 2(u^2 + v^2) + 1}{(u^2 + v^2 + 1)^2}$$

$$= \frac{(u^2 + v^2 + 1)^2}{(u^2 + v^2 + 1)^2}$$

$$= 1$$

Now, remember that the motivation for all this was to figure out what $f(z) = 1/z$ does geometrically. It’s easy to see that

$$f(u + iv) = \frac{1}{u - iv} = \frac{u + iv}{(u - iv)(u + iv)} = \frac{u + iv}{u^2 + v^2}$$

and we’re wanting to see what $g^{-1}(f(g(x, y, z)))$ is. Now we have all the pieces:

$$g^{-1}(f(g(x, y, z))) = g^{-1}(f\left(\frac{x + iy}{1 - z}\right))$$

$$= g^{-1}\left(\frac{x + iy}{x^2 + y^2}\right)$$

$$= g^{-1}\left(\frac{(x + iy)(1 - z)}{x^2 + y^2}\right)$$

$$= g^{-1}\left(\frac{x + iy}{1 - z^2}\right)$$

$$= g^{-1}\left(\frac{x + iy}{1 + z}\right)$$

$$= \left(\frac{2x}{x^2 + y^2} + 1\right), \left(\frac{2y}{x^2 + y^2} + 1\right), \left(\frac{x^2 + y^2}{(1+z)^2} - 1\right)$$

$$= \left(\frac{2x}{1 - z^2} + 1\right), \left(\frac{2y}{1 - z^2} + 1\right), \left(\frac{1 - z^2}{(1+z)^2} - 1\right)$$

$$= \left(\frac{1 - z}{1 + z} + 1\right), \left(\frac{1 - z}{1 + z} + 1\right), \left(\frac{1 - z}{1 + z} + 1\right)$$

$$= (x, y, -z)$$
A quicker way to see this (and one that doesn’t require us to work out an explicit formula
for \(g^{-1} \)) is to observe that \(f(g(x, y, z)) = \frac{x+iy}{1+z} \) (line 5 above). Since \(g(x, y, z) = \frac{x+iy}{1+z} \), this tells us that \(f(g(x, y, z)) = g(x, y, -z) \). However, the explicit formula for \(g^{-1} \) will be useful eventually, so we might as well work it out now!

Note also that reflection in the \(yz \)-plane (changing the sign of the first coordinate) covers \(f(z) = -z \) and that reflection in the \(xz \)-plane (changing the sign of the second coordinate) covers \(f(z) = \overline{z} \). This gives a quick proof of the fact (verified in an exercise) that the antipodal map covers \(f(z) = -1/\overline{z} \) since composing all three of these reflection maps gives that transformation.