1.4-1. Let ABC be a triangle, G its centroid, and suppose that BB' is congruent to CC', where B' is the midpoint of AC and C' is the midpoint of AB. Show that GB is congruent to GC, and thus that GBC is isosceles. Use that to show that triangle $BB'C$ is congruent to $CC'B$ and then conclude that ABC is isosceles.

1.4-2. Let ABC be a triangle, G its centroid, and A', B' and C' be the midpoints of BC, CA, and AB, respectively. Recall that the sum of the lengths of any two sides of a triangle is greater than the length of the third side. Use this to show that

$$\frac{2}{3}BB' + \frac{2}{3}CC' > BC$$

Add three inequalities like this to show that the sum of the medians is greater than $3/4$ of the perimeter.

For the other direction, complete the parallelogram $CABK$ and observe that twice the median from A is $AK < AC + CK = b + c$. Add three inequalities like this to show that the sum of the medians is less than the perimeter.

1.5-1. Let ℓ be a line through O, and let P_ℓ be the image of P under reflection through ℓ. What this question is asking is to describe the shape of the set of all the P_ℓ as ℓ varies. Note that the distance from P to O is always the same as the distance from P_ℓ to O.

1.5-2. Multiply both sides of the first equation by Δ. For the second, consider the equations

$$r = \sqrt{\frac{\Delta}{s}}$$
$$r_a = \sqrt{\frac{\Delta}{s - a}}$$
$$r_b = \sqrt{\frac{\Delta}{s - b}}$$
$$r_c = \sqrt{\frac{\Delta}{s - c}}$$

Multiply these four equations together.

1.5-3. Let the distances from A, B, C to the points of tangency of the incircle be denoted t_a, t_b, t_c, respectively. Observe that

$$t_b + t_c = a$$
$$t_a + t_c = b$$
$$t_a + t_b = c$$

Use these to solve for t_a and show that it’s $s - a$. Take a similar approach for the three excircles.

1.5-4. Use the “angle at the circumference is half the angle at the center” theorem.

1.5-5. You shouldn’t need a hint on this one...

1.6-1. This is the “easy” proof of concurrence of altitudes. It’s hard to give a better hint than the description in the problem.
1.6-4. Recall that the area of a triangle is half the product of any side with the altitude on that side. If two of these altitudes are equal, what does that say about the sides?

1.6-6. The length of the altitude is $b \sin C$. Now show that $b = 2R \sin B$.

1.6-7. Construct lines parallel to BC through G and A. Then, these lines and BC must cut any transverse line proportionally. The median is cut in a $2:1$ ratio, so the altitude must also be cut in a $2:1$ ratio. What does this say about the perpendicular distance from G to BC?

1.6-8. Suppose the Euler line of triangle ABC passes through A. If the angle at A is not a right angle, show that AH (H is the orthocenter) must be a median (that is, it must also pass through the midpoint of BC) in addition to being an altitude.