We introduce a method for producing a variety of $p^r \times p^s$ magic rectangles using \mathbb{Z}_p-linear transformations. This adds significantly to the collection of known magic rectangles with non-coprime dimensions.

Keywords: magic rectangle; magic square; combinatorial design

AMS Subject Classification: 05B15; 15B33; 05B30

1. Introduction

Our purpose is to introduce a linear-algebraic construction for magic rectangles of size $p^r \times p^s$, where p is prime and $1 \leq r \leq s$. For fixed p, r, and s, this method allows for the production of many different magic rectangles. It follows that, for many non-coprime dimensions, this construction will significantly augment the sparse collection of “known” magic rectangles.

A **magic rectangle** of size $m \times n$ is a rectangular array containing integers $0, 1, \ldots, mn - 1$ such that the row sums are constant and the column sums are constant. (The constants are different if $m \neq n$.) When $m = n$ and both diagonal sums are equal to the row/column sums, one obtains a **magic square**. The construction of magic squares is a venerable pastime, dating back to the Lo-Shu square of ancient China (ca 650 BCE). A variety of magic square constructions may be found in [1]; connections among magic squares, magic rectangles, orthogonal latin squares, and statistical design are described in [6], [9], and [10].

Efforts to construct magic rectangles are much more recent and far less numerous than those for their square counterparts. Sun [11] showed that a magic rectangle of order $m \times n$ exists if and only if m and n have the same parity, are both larger than 1, and are not both 2. (We declare such sizes $m \times n$ to be **admissible**.) Similar (partial) results were achieved independently in [2], and were further refined in [7]. Other constructions of magic rectangles may be found in [3], [4], and [5]. Invariably these constructions have a combinatorial flavor and produce a single example (and its obvious permutations) for each admissible size. We take a different approach: instead of a combinatorial method producing one example for each of a large set of sizes, we introduce a linear-algebraic method that will produce a variety of examples for a rather more limited set of sizes, namely $p^r \times p^s$ where p is prime. This, together with the magic rectangle product theorem given in [2], will increase the number of magic rectangle examples for many admissible sizes $m \times n$ where $\gcd(m, n) > 1$.

The paper is organized as follows: The construction is given in Section 2, conditions we must place upon certain aspects of the construction are developed in Section 3, and in Section 4 we show that these conditions can be satisfied for each
size of the form \(p^r \times p^s \) where \(r < s \). (The case \(r = s \) is addressed in Section 3.) Along the way we will have occasion to perform arithmetic in both \(\mathbb{Z} \) and \(\mathbb{Z}_p \). Arithmetic occurring in \(\mathbb{Z}_p \) with final result regarded as an integer will be indicated by angle brackets. For example, if \(p = 5 \) then \(\langle 2 \cdot 3 + 1 \rangle_5 = 2 \in \mathbb{Z} \).

2. Construction

Let \(p \) be prime and \(1 \leq r \leq s \). In this section we propose a method for producing magic rectangles of size \(p^r \times p^s \) using \(\mathbb{Z}_p \)-linear operators.

Locations in a \(p^r \times p^s \) magic rectangle can be described by elements of the vector space \(\mathbb{Z}_p^{r+s} \). Rows are enumerated from the top, beginning with 0 and ending with \(p^r - 1 \); columns from left to right beginning with 0 and ending with \(p^s - 1 \). By expressing each row number in base \(p \) we can identify row locations with \(\mathbb{Z}_p^r \). Similarly we can identify column locations with \(\mathbb{Z}_p^s \), and therefore any grid location (row, column) may be identified with an element of \(\mathbb{Z}_p^r \times \mathbb{Z}_p^s = \mathbb{Z}_p^{r+s} \). By way of illustration, the symbol “25” in Figure 1 lies in location 01101 \(\in \mathbb{Z}_2^{2+3} \), where the first two entries indicate the row and the last three entries indicate the column.

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 2 & 0 & 5 & 17 & 27 \\
28 & 2 & 2 & 8 & 19 & 25 & 13 & 7 \\
11 & 1 & 21 & 31 & 4 & 14 & 26 & 16 \\
23 & 29 & 9 & 3 & 24 & 18 & 6 & 12 \\
\end{array}
\]

Figure 1. A magic rectangle of size \(2^2 \times 2^3 \).

Symbols in a \(p^r \times p^s \) magic rectangle can also be described by elements of \(\mathbb{Z}_p^{r+s} \). These symbols consist of the numbers \(\{0, 1, \ldots, p^{r+s} - 1\} \). Each symbol \(\Lambda \) has a unique base-\(p \) expansion

\[
\Lambda = \lambda_{p^{r+s} - 1} p^{r+s-1} + \lambda_{p^{r+s} - 2} p^{r+s-2} + \cdots + \lambda_p \cdot p^1 + \lambda_1 \cdot p^0,
\]

where \(\lambda_j \in \{0, 1, \ldots, p-1\} \) for each \(j \in \{0, 1, \ldots, r+s-1\} \). Therefore we can make the identification

\[
\Lambda \leftrightarrow (\lambda_{p^{r+s} - 1}, \ldots, \lambda_p) \in \mathbb{Z}_p^{r+s}.
\]

We will find it convenient to write \(\Lambda = (\Lambda_r, \Lambda_s) \), where

\[
\Lambda_r = (\lambda_{p^{r+s} - 1}, \ldots, \lambda_p) \quad \text{and} \quad \Lambda_s = (\lambda_{p^{r+s} - 1}, \ldots, \lambda_p).
\]

For example, if \(p = 2, r = 2, \) and \(s = 3 \) as in Figure 1, then \(\Lambda = 25 \) corresponds to \((\Lambda_r, \Lambda_s) = (11, 001) \). We will routinely view these vectors, both for positions and symbols, as column vectors via transpose.

The magic rectangle construction is as follows. Let \(M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \) be an \((r+s) \times (r+s) \) matrix with entries in \(\mathbb{Z}_p \), expressed in block form, where the sizes of \(A, B, C, D \) are \(r \times r, r \times s, s \times r, \) and \(s \times s \), respectively. Define a linear mapping \(T_M : \mathbb{Z}_p^{r+s} \rightarrow \mathbb{Z}_p^{r+s} \) by \(T_M(\Lambda) = MA \). The mapping \(T_M \) uniquely determines a \(p^r \times p^s \) array with entries in \(\{0, 1, \ldots, p^{r+s} - 1\} \) by declaring \(T_M(\Lambda) \) to be the
Linear Magic Rectangles

array location housing the number with base-p representation Λ (as described in the previous paragraphs). When $p = 2$, $r = 2$, and $s = 3$, the matrix

$$M = \begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{bmatrix}$$

determines the magic rectangle shown in Figure 1. To see that the number 25 is sent to the correct location, recall that $\Lambda = 11001$ and so $M\Lambda = 01101$, which is indeed the location housing 25 as described above.

3. Conditions

In the construction of Section 2, clearly the matrix M must be nonsingular so that each location houses a unique number. In this section we develop a list of conditions on the matrix M that guarantee a magic rectangle. These conditions are summarized in Theorem 3.4. Throughout we let the matrix M, submatrices A, B, C, D, and the mapping T_M be as in Section 2.

Lemma 3.1: If M and A are nonsingular and B has full rank then the rectangular array of numbers determined by T_M has magic rows.

Proof: Let $\mu \in \mathbb{Z}_p^r$. A number $\Lambda = (\Lambda_r, \Lambda_s)$ lies in the μ-th row of the array if and only if

$$A\Lambda_r = \mu - B\Lambda_s. \quad (1)$$

Since B is of full rank its kernel as a linear operator $\mathbb{Z}_p^s \to \mathbb{Z}_p^r$ is of size p^{r-s}, so as Λ_s ranges over \mathbb{Z}_p^s the right-hand side of (1) achieves each element of \mathbb{Z}_p^r exactly p^{r-s} times. This implies, since A is nonsingular, that Λ_r ranges over \mathbb{Z}_p^r exactly p^{r-s} times. Regarding Λ_s and Λ_r as integers following Section 2, that is,

$$\Lambda_r \longleftrightarrow p^s(\lambda_{p^{r-1}} p^{r-1} + \cdots + \lambda_p p^0) \text{ and } \Lambda_s \longleftrightarrow \lambda_{p^{s-1}} p^{s-1} + \cdots + \lambda_1 p^0,$$

we have that the sum of all the integers in the μ-th row is

$$p^{r-s}[p^s(0 + 1 + \cdots + p^{r-1})] + [0 + 1 + \cdots (p^s - 1)] = \frac{p^s(p^{s+r} - 1)}{2}$$

where the left summand represents the sum of all the Λ_r, each accounted for p^{r-s} times, and the right summand represents the sum of all the Λ_s, each accounted for once. This sum is independent of μ; the conclusion follows. \qed

Next we seek conditions on M that ensure magic columns in a rectangle determined by T_M. Let $\nu \in \mathbb{Z}_p^s$. A number $\Lambda = (\Lambda_r, \Lambda_s)$ lies in the ν-th column exactly when

$$DA_s = \nu - CA_r. \quad (2)$$

If we assume that C and D are of full rank, then as Λ_r ranges over \mathbb{Z}_p^r exactly once we have that Λ_s ranges over \mathbb{Z}_p^s a total of p^{r-s} times. If $r = s$ then, arguing
just as in Lemma 3.1, we conclude that the array has magic columns. Therefore, if
\(r = s \) and \(M, A, B, C, D \) are all of full rank then the array determined by \(T_M \) is a
magic rectangle. Matrices satisfying these conditions exist except when \(p = 2 \) and
\(r = s = 1 \) (e.g., see Proposition 2.4 of [8]), and exist in great abundance as \(p \) and
\(r = s \) become large.

On the other hand, problems arise in (2) when \(r < s \). In this case \(p^{r-s} < 1 \), thus
stifling our attempt to mimic the proof of Lemma 3.1. However, we can say that
the sum of the numbers in the \(\nu \)-th column is
\[p^s(0 + 1 + \cdots + p^{r-1}) + S_{\nu}, \tag{3} \]
where the left summand is the integer sum of the \(\Lambda_r \)'s , while \(S_{\nu} \) denotes the
integer sum (possibly depending on \(\nu \)) of the corresponding \(\Lambda_s \)'s. Since the magic
sum along columns must be \(p^s(p^{r+s} - 1)/2 \) (obtained by adding all of the symbols
together and dividing by the number of columns), we conclude from (3) that we
require \(S_{\nu} = p^s(p^{s-1} - 1)/2 \). In the remainder of this section we introduce conditions
on \(C \) and \(D \) that yield this value of \(S_{\nu} \).

In arguments that follow we will be considering a \(\mathbb{Z}_p \)-matrix \(W \) of size \(s \times r \) with
block form
\[W = \begin{bmatrix} U_r \\ U_{s-r} \end{bmatrix}, \tag{4} \]
where \(U_r \) and \(U_{s-r} \) are of sizes \(r \times r \) and \((s - r) \times r \), respectively. Observe that if
\(U_r \) is nonsingular then the column span of \(W \) is identical to the column span of
\(\begin{bmatrix} I_r \\ V \end{bmatrix} \), where \(V = U_{s-r}U_r^{-1} \) and \(I_r \) is the \(r \times r \) identity matrix. We let \(\vec{v}(1), \ldots, \vec{v}(r) \)
denote the columns of \(V \) and
\[\vec{v}(r) = \begin{bmatrix} v_s-r-1 \\ \vdots \\ v_0 \end{bmatrix}. \]

Lemma 3.2: If \(a, b \in \mathbb{Z}_p \) with \(a \neq 0 \) then the mapping \(x \mapsto ax + b \) is a bijection
of \(\mathbb{Z}_p \) onto itself.

Lemma 3.3: Assume \(r < s \). Let \(\mu \in \mathbb{Z}_p^s \) and let \(W \) be as in (4) above where
\(U_r \) is nonsingular and the last column \(\vec{v}(r) \) of \(V \) consists of nonzero entries. Define
\(F : \mathbb{Z}_p^r \to \mathbb{Z}_p^s \) by \(F(x) = \mu + Wx \). Regarding elements of \(\mathbb{Z}_p^s \) as base-\(p \) representations
of integers \(0, 1, \ldots, p^s - 1 \), we have
\[\sum_{x \in \mathbb{Z}_p^r} F(x) = \frac{p^s(p^s - 1)}{2}, \]
where the sum is taken over the integers.

Proof: Since \(W \) has full rank our sum is exactly the sum over all vectors in the
image of \(F \). These vectors lie in the \(\mu \)-translate of the \(\mathbb{Z}_p \) column span of \(\begin{bmatrix} I_r \\ V \end{bmatrix} \).
that is, they have the form
\[
\begin{pmatrix}
\mu_{s-1} \\
\vdots \\
\vdots \\
\mu_0
\end{pmatrix}
+ \begin{pmatrix}
\lambda_{s-1} \\
\vdots \\
\lambda_{s-r+1} \\
\alpha
\end{pmatrix},
\]
where \(\mu_{s-1}, \ldots, \mu_0\) are the components of \(\mu\), \(\lambda_{s-1}, \ldots, \lambda_{s-r+1}, \alpha\in\mathbb{Z}_p\), and \(\vec{w} = \lambda_{s-1}\vec{v}^{(1)} + \ldots + \lambda_{s-r+1}\vec{v}^{(r)}\). Regarding these vectors as base-\(p\) representations of integers (Section 2), the corresponding integers have the form
\[
\left[\sum_{j=0}^{s-r-1} (\mu_j + w_j + \alpha v_j)p^j + (\mu_{s-r} + \alpha)p^s - r + 1 \right] + \sum_{j=1}^{r-1} (\mu_{s-r+j} + \lambda_{s-r+j})p^{s-r+j},
\]
where \(w_0, \ldots, w_{s-r-1}\) are the components of \(\vec{w}\).

We need to add these integers as \(\lambda_{s-1}, \ldots, \lambda_{s-r+1}, \alpha\) vary. Begin by holding the \(\lambda\)'s fixed and adding the expressions in (5) as \(\alpha\) to vary over \(\mathbb{Z}_p\). Via Lemma 3.2 (note that \(v_0, \ldots, v_{s-r-1}\) are nonzero) and elementary addition formulas we obtain
\[
\sum_{\alpha=0}^{p-1} \left[\left(\sum_{j=0}^{s-r-1} (\mu_j + w_j + \alpha v_j)p^j \right) + (\mu_{s-r} + \alpha)p^s - r + 1 \right] + \sum_{j=1}^{r-1} (\mu_{s-r+j} + \lambda_{s-r+j})p^{s-r+j+1}
\]
\[
= \sum_{\alpha=0}^{p-1} \sum_{j=0}^{s-r} (\alpha)p^j + \sum_{j=1}^{r-1} (\mu_{s-r+j} + \lambda_{s-r+j})p^{s-r+j+1}
\]
\[
= p(p^{s-r+1} - 1) + \sum_{j=1}^{r-1} (\mu_{s-r+j} + \lambda_{s-r+j})p^{s-r+j+1}.
\]

Next, adding in (6) by letting \(\lambda_{s-r+1}, \ldots, \lambda_{s-1}\) vary (with a total of \(p^{r-1}\) summands) we use Lemma 3.2 again to yield
\[
\frac{p^r(p^{s-r+1} - 1)}{2} + p^{s-r+2} \sum_{\lambda_{s-r+1}=0}^{p-1} \cdots \sum_{\lambda_1=0}^{p-1} \sum_{j=1}^{r-1} (\mu_{s-r+j} + \lambda_{s-r+j})p^{j-1}
\]
\[
= \frac{p^r(p^{s-r+1} - 1)}{2} + p^{s-r+2} \left(\frac{p^{r-1}(p^{r-1} - 1)}{2} \right)
\]
\[
= \frac{p^r(p^s - 1)}{2}.
\]

This proves the lemma. \(\Box\)

\textbf{Theorem 3.4:} The matrix \(M\) determines a \(p^r \times p^s\) magic rectangle according to the construction given in Section 2 provided that the matrices \(M, A, B, C, D\) are of full rank over \(\mathbb{Z}_p\) and that when \(r < s\) the matrix \(D^{-1}C = \begin{bmatrix} U_r \\ U_{s-r} \end{bmatrix}\) satisfies
(a) \(U_r \) is an \(r \times r \) nonsingular matrix over \(\mathbb{Z}_p \), and

(b) the last column of \(V = U_{s-r}U_r^{-1} \) consists entirely of nonzero entries.

Proof: The case \(r = s \) was addressed earlier in the section, so we assume \(r < s \).

The fact that \(M \) is nonsingular ensures that each location of the array is populated by a unique number. Moreover, Lemma 3.1 guarantees that the array will have magic rows provided that \(A \) and \(B \) are of full rank. Finally, in order for the array to have magic columns we require that \(S_\nu = p^r(p^s - 1)/2 \) for each \(\nu \in \mathbb{Z}_p^s \) where, by (2) and (3), \(S_\nu \) is the (integer) sum of all \(\Lambda_s \) satisfying \(\Lambda_s = D^{-1}\nu - D^{-1}CA_r \) as \(\Lambda_r \) ranges over \(\mathbb{Z}_p^r \). According to Lemma 3.3, \(S_\nu \) has the required value when \(C, D \) are of full rank and \(-D^{-1}C\) (or equivalently \(D^{-1}C\)) satisfies the conditions listed in items (a) and (b) above. \(\square \)

4. Existence and Consequences

Theorem 3.4 sets forth conditions on the matrix \(M \) (see Section 2) that will guarantee a \(p^r \times p^s \) magic rectangle. Observe that these conditions are open, so that as \(p, r, \) and \(s \) increase we should be able to find many matrices \(M \) that satisfy the conditions, perhaps by random search. These will correspond to many magic rectangles. In this section we establish the existence of such matrices \(M \) when \(r < s \).

(The case \(r = s \) was addressed in Section 3.) The following notation will be used:

- \(0_{m,n} \) denotes the \(m \times n \) matrix consisting entirely of 0’s.
- \(J_{m,n} \) denotes the \(m \times n \) matrix with 1’s in the last (rightmost) column and 0’s elsewhere.
- \(U_m \) denotes the \(m \times m \) matrix with 1’s on the super-diagonal (immediately above the main diagonal) and 0’s elsewhere.
- \(E_{m,n} \) denotes the \(m \times n \) matrix with a 1 in the \((n, 1)\)-position (\(n \)-th row; first column) and 0’s elsewhere.

Theorem 4.1: Matrices \(M \) with entries in \(\mathbb{Z}_p \) satisfying the conditions of Theorem 3.4 exist for all primes \(p \) and all integers \(r, s \) with \(1 \leq r < s \).

Proof: When \(p = 2 \) the matrix

\[
M = \begin{bmatrix}
I_r & U_r & E_{r,s-r} \\
I_r & I_r & 0_{r,s-r} \\
J_{s-r,r} & 0_{s-r,r} & I_{s-r}
\end{bmatrix}
\]

satisfies the conditions of Theorem 3.4, where the division into submatrices \(A, B, C, D \) is indicated by double lines. Similarly, when \(p > 2 \) the matrix

\[
M = \begin{bmatrix}
I_r & -I_r & 0_{r,s-r} \\
I_r & I_r & 0_{r,s-r} \\
J_{s-r,r} & 0_{s-r,r} & I_{s-r}
\end{bmatrix}
\]

satisfies the conditions. \(\square \)
Linear Magic Rectangles

For example, when \(p = 3, r = 2, \) and \(s = 3 \) the matrix \(M \) given in the proof of Theorem 4.1 gives rise to the following magic rectangle:

\[
\begin{bmatrix}
\end{bmatrix}
\]

The magic rectangle in Figure 1 is generated from a matrix not in the list presented in the proof of Theorem 4.1.

In conclusion, we indicate how these results augment the existing known magic rectangles in sizes other than \(p \times r \times s \). It is known (e.g., see [2]) that given magic rectangles of sizes \(m_1 \times n_1 \) and \(m_2 \times n_2 \), one can construct a magic rectangle of size \(m_1 \times n_1 \), \(m_2 \times n_2 \). Now suppose that \(m \times n \) is an admissible size with \(m = \alpha p_1^r_1 p_2^r_2 \cdots p_k^r_k \) and \(n = \beta p_1^s_1 p_2^s_2 \cdots p_k^s_k \) where \(p_1, \ldots, p_k \) are prime, \(1 \leq r_j \leq s_j \) for \(1 \leq j \leq k \), and \(\alpha \times \beta \) is an admissible magic rectangle size. Using the aforementioned product theorem, magic rectangles of size \(m \times n \) can be generated by a single \(\alpha \times \beta \) magic rectangle together with \(p^{r_j} \times p^{s_j} \) rectangles generated by our construction.

References