
Covering maps, covering transformations,

and the fundamental group

Definition. Suppose X̄ and X are spaces that are path connected and locally path
connected. A continuous function p : X̄ → X is called a covering map if for every
x ∈ X there is a path connected open subset N of X (called an elementary neighbor-
hood of x) such that (i) x ∈ N ; and (ii) for every path component U of p−1(N) we
have that p|U : U → N is a homeomorphism.

Remark. Note that U in the above definition is necessarily open in X̄ since X̄ is
locally path connected, p is continuous, and N is open in X. For if x̄ ∈ U , then
x̄ ∈ p−1(N) and p−1(N) is open in X̄. So, there is a path connected open subset
V ⊆ X̄ such that x̄ ∈ V ⊆ p−1(N). However, U is a path component of p−1(N) so
that x ∈ V ⊆ U . Hence, U is a neighborhood for all of its points and therefore open.

Example 1. X̄ = R, X = S1 ⊆ R2, p(t) = (cos(2πt), sin(2πt)).

Example 2. X̄ = X = {z ∈ C | |z| = 1}, p(z) = z3.

Example 3. X̄ = R2, X = T 2 ⊆ R3 (with toroidal radii 0 < r < R, centered at the
origin), p(u, v) = ((R + r cos(2πv)) cos(2πu), (R + r cos(2πv)) sin(2πu), r sin(2πv)).

Example 4. Represent the projective plane X = P 2 as the quotient space of S2,
where x ∼ −x, i.e., with pairs of diametrically opposite points identified to one point
[x] = {x,−x}. Take X̄ = S2 and p(x) = [x].

In class, we proved the following important

Lemma 1 (Unique path lifting). Let p : X̄ → X be a covering map and let x̄ ∈ X̄,
x ∈ X with p(x̄) = x. Then for every continuous path f : [0, 1] → X with f(0) = x
there is exactly one continuous path g : [0, 1] → X̄ with g(0) = x̄ and f = p ◦ g.

A similar argument yields a proof of

Lemma 2 (Unique homotopy lifting). Let p : X̄ → X be a covering map
and let x̄ ∈ X̄, x ∈ X with p(x̄) = x. Then for every continuous homotopy
H : [0, 1] × [0, 1] → X with H(0, 0) = x there is exactly one continuous homotopy
G : [0, 1]× [0, 1] → X̄ with G(0, 0) = x̄ and F = p ◦G.

Definition. We call the map g : ([0, 1], 0) → (X̄, x̄) of Lemma 1 the lift of the path
f : ([0, 1], 0) → (X, x). Similarly, in Lemma 2, G : ([0, 1] × [0, 1], (0, 0)) → (X̄, x̄) is
called the lift of the homotopy H : ([0, 1]× [0, 1], (0, 0)) → (X, x).
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Based on Lemma 1 and Lemma 2, we proved in class the following

Corollary 1. Let p : X̄ → X be a covering map. If α, β : [0, 1] → X̄ are two
continuous paths with α(0) = β(0) and [p ◦ α] = [p ◦ β], then [α] = [β]; in particular
α(1) = β(1).

This immediately yields

Corollary 2. Let p : X̄ → X be a covering map and let x̄ ∈ X̄, x ∈ X with p(x̄) = x.
Then the homomorphism p# : π1(X̄, x̄) → π1(X, x) given by p#([α]) = [p ◦ α] is
injective.

Remark. In particular, π1(X̄, x̄) is isomorphic to the subgroup p#(π1(X̄, x̄)) of
π1(X, x). In turn, p#(π1(X̄, x̄)) are precisely those elements of π1(X, x), whose loop-
representatives lift to loops at x̄.

Definition. Let p : X̄ → X be a covering map. We call T : X̄ → X̄ a covering
transformation if (i) T is a homeomorphism and (ii) p = p ◦ T . The set of all
covering transformations forms a group under function composition, which is called
the automorphism group Aut(X̄

p−→ X).

Example 5. With the covering maps defined as above, we have Aut(R p−→ S1) ≈ Z,
since every covering transformation is of the form T (t) = t + n for some n ∈ Z.

Similarly, Aut(R2 p−→ T 2) ≈ Z × Z, since every covering transformation is of the
form T (u, v) = (u + n, v + m) for some n, m ∈ Z.

Remark. Recall that for a subgroup H of a group G we define the normalizer of H
in G by NG(H) = {g ∈ G | gH = Hg}; it is the largest subgroup of G in which H is
normal.

We now come to an important result, which connects covering space theory to
fundamental groups:

Theorem. Let p : X̄ → X be a covering map and let x̄ ∈ X̄, x ∈ X with p(x̄) = x.
Consider G = π1(X, x) and H = p#(π1(X̄, x̄)). Then there is a surjective homo-

morphism φ : NG(H) → Aut(X̄
p−→ X) whose kernel is equal to H. In particular,

Aut(X̄
p−→ X) ≈ NG(H)/H.

Proof. For [α] ∈ NG(H) and ȳ ∈ X̄ we define φ([α])(ȳ) as follows: choose any
continuous path f : [0, 1] → X̄ with f(0) = x̄ and f(1) = ȳ. Let α̃ : [0, 1] → X̄
be the lift of α : [0, 1] → X with α̃(0) = x̄ and let f ′ : [0, 1] → X̄ be the lift of
p ◦ f : [0, 1] → X with f ′(0) = α̃(1). We define φ([α])(ȳ) = f ′(1). (You might want
to sketch a diagram at this point.)

We have to show that

(i) φ is well-defined;

(ii) φ([α]) ∈ Aut(X̄
p−→ X);

(iii) φ is a homomorphism;
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(iv) φ is onto;

(v) ker φ = H.

(i) We wish to show that the definition of φ is independent of the choice of f . To this
end, let g : [0, 1] → X̄ be another continuous path with g(0) = x̄ and g(1) = ȳ. It is
our goal to show that f ′(1) = g′(1). Put z̄ = α̃(1), then

[ α̃ ]π1(X̄, x̄)[α̃] = π1(X̄, z̄).

Applying p# to this equation, we get

[α]−1p#(π1(X̄, x̄))[α] = p#(π1(X̄, z̄)).

However, by assumption, [α]−1p#(π1(X̄, x̄))[α] = p#(π1(X̄, x̄)), so that

p#(π1(X̄, x̄)) = p#(π1(X̄, z̄)).

This means that the elements of π1(X, x) which lift to loops at x̄ are the same as
those which lift to loops at z̄. Consequently,

[p ◦ (f · ḡ)] ∈ p#(π1(X̄, x̄)) = p#(π1(X̄, z̄)).

In other words, [p ◦ (f · ḡ)] = [p ◦ γ] for some γ : [0, 1] → X̄ with γ(0) = γ(1) = z̄.
From Corollary 1 we now learn that (p◦f) ·(p◦ ḡ) lifts to some loop at z̄. Since f ′ and
g′ are the unique lifts of p ◦ f and p ◦ g at z̄, respectively, we must have f ′(1) = g′(1).

(ii) First of all not that, by definition, we have p◦φ([α])(ȳ) = p(f ′(1)) = p(f(1)) =
p(ȳ). If N is an elementary neighborhood of y = p(ȳ) and U1 and U2 the path
components of p−1(N) containing ȳ and φ([α])(ȳ), respectively, we get φ([α])(U1) =
U2. To see this, all we have to do is choose the path f in the definition of φ([α])(w̄)
for w̄ ∈ U1 to always begin with the same path f running from f(0) = x̄ to f(1) = ȳ
and concatenate it with a path h running from h(0) = ȳ to h(1) = w̄ which stays
in U1. This observation yields continuity of φ[α]. Also, it is clear that φ([ᾱ]) is the

inverse of φ[α]. In summary, φ[α] ∈ Aut(X̄
p−→ X).

(iii) Let [α], [β] ∈ NG(H) and ȳ ∈ X̄. Let α̃, β̃ : [0, 1] → X̄ be the lifts of the paths
α, β : [0, 1] → X with α̃(0) = β̃(0) = x̄, respectively. Choose a path f : [0, 1] → X̄
from f(0) = x̄ to f(1) = ȳ. Let f ′ be the lift of p ◦ f with f ′(0) = β̃(1). Then
φ([β])(ȳ) = f ′(1). Let β̃′ be the lift of p ◦ β̃ = β with β̃′(0) = α̃(1). Then α̃ · β̃′

is the lift of α · β : [0, 1] → X which starts at x̄. Let f ′′ be the lift of p ◦ f with
f ′′(0) = α̃ · β̃′(1) = β̃′(1). (Again, a sketch of the situation might help here.) Then,
by definition,

φ([α] ∗ [β])(ȳ) = φ([α · β])(ȳ) = f ′′(1).

On the other hand, β̃′ · f ′′ is now the lift of p ◦ (β̃ · f ′) with begins at α̃(1), so that

φ([α]) ◦ φ([β])(ȳ) = φ([α])(f ′(1)) = β̃′ · f ′′(1) = f ′′(1).

Hence, φ([α] ∗ [β]) = φ([α]) ◦ φ([β]) and φ is indeed a homomorphism.
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(iv) Let T ∈ Aut(X̄
p−→ X). Choose any continuous path α̃ : [0, 1] → X̄ with

α̃(0) = x̄ and α̃(1) = T (x̄). Put α = p ◦ α̃. Then α(0) = p ◦ α̃(0) = p(x̄) = x and
α(1) = p ◦ α̃(1) = p ◦ T (x̄) = p(x̄) = x. Therefore, [α] ∈ π1(X, x).

In fact, [α] ∈ NG(H). To see why, first recall from Part (i) above that

[α]−1p#(π1(X̄, x̄))[α] = p#(π1(X̄, T (x̄))). (1)

On the other hand, since T : X̄ → X̄ is a homeomorphism, we know that it induces
an isomorphism T# : π1(X̄, x̄) → π1(X̄, T (x̄)). Consequently,

p#(π1(X̄, x̄)) = (p ◦ T )#(π1(X̄, x̄)) = p#(T#(π1(X̄, x̄))) = p#(π1(X̄, T (x̄))). (2)

Combining Equations (1) and (2) we get

[α]−1p#(π1(X̄, x̄))[α] = p#(π1(X̄, x̄)),

which says that [α] ∈ NG(H).
If now ȳ ∈ X̄ and f : [0, 1] → X̄ is any path with f(0) = x̄ and f(1) = ȳ, consider

f ′ = T ◦f . Since p◦f ′ = p◦(T ◦f) = (p◦T )◦f = p◦f , we see that f ′ is the lift of p◦f
with f ′(0) = T ◦ f(0) = T (x̄) = α̃(1). Therfore, φ([α])(ȳ) = f ′(1) = T (f(1)) = T (ȳ).
Hence, T = φ([α]), proving that φ is onto.

(v) Finally, φ([α]) = idX̄ if and only if f(1) = f ′(1), which by unique path lifting
can only occur when f = f ′, that is, when α̃(0) = α̃(1). This is the case precisely
when α lifts to a loop at x̄, i.e., when [α] ∈ p#(π1(X̄, x̄)) = H. So, the kernel of φ
equals H.

4


