Covering maps, covering transformations,

and the fundamental group

Definition. Suppose X and X are spaces that are path connected and locally path
connected. A continuous function p : X — X is called a covering map if for every
x € X there is a path connected open subset N of X (called an elementary neighbor-
hood of z) such that (i) z € N; and (ii) for every path component U of p~!(N) we
have that p|y : U — N is a homeomorphism.

Remark. Note that U in the above definition is necessarily open in X since X is
locally path connected, p is continuous, and N is open in X. For if x € U, then
T € p~Y(N) and p~!(N) is open in X. So, there is a path connected open subset
V C X such that z € V C p~}(INV). However, U is a path component of p~*(NV) so
that x € V C U. Hence, U is a neighborhood for all of its points and therefore open.

Example 1. X =R, X = S! C R? p(t) = (cos(2rt), sin(27t)).

Example 2. X = X = {2 € C | |z| =1}, p(z) = 23
Example 3. X = R? X = T2 C R3 (with toroidal radii 0 < r < R, centered at the
origin), p(u,v) = ((R —i— rcos(2mv)) cos(2mu), (R + r cos(27mv)) sin(27u), r sin(27v)).

Example 4. Represent the projective plane X = P? as the quotient space of S2,
where x ~ —u, i.e., with pairs of diametrically opposite points identified to one point
[z] = {z,—x}. Take X = S? and p(z) = [z].

In class, we proved the following important

Lemma 1 (Unique path lifting). Letp: X — X be a covering map and let T € X,
z € X with p(z) = x. Then for every continuous path f :[0,1] — X with f(0) =
there is exactly one continuous path g : [0,1] — X with g(0) =z and f =pog.

A similar argument yields a proof of

Lemma 2 (Unique homotopy lifting). Let p : X — X be a covering map
and let 7 € X, v € X with p(x) = x. Then for every continuous homotopy
H :[0,1] x [0,1] — X with H(0,0) = x there is exactly one continuous homotopy
G : [0, 1] x [0,1] — X with G(0,0) =% and F = poG.

Definition. We call the map g : ([0,1],0) — (X, Z) of Lemma 1 the lift of the path
f:(0,1],0) — (X, ). Similarly, in Lemma 2, G : ([0,1] x [0,1],(0,0)) — (X, z) is
called the [ift of the homotopy H : ([0, 1] x [0, 1], (0, 0)) (X, z).



Based on Lemma 1 and Lemma 2, we proved in class the following

Corollary 1. Let p : X — X be a covering map. If a,3 : [0,1] — X are two
continuous paths with «(0) = 3(0) and [po a] = [po B3], then [a] = [B]; in particular
a(l) = p(1).

This immediately yields

Corollary 2. Letp: X — X bea covering map and let T € X,z € X withp(z) =
Then the homomorphism py : m(X,Z) — m (X, z) given by pu([a]) = [poa is
mjective.

Remark. In particular, zrl(X' ,Z) is isomorphic to the subgroup px(m (X, 7)) of
m (X, x). In turn, px(m (X, Z)) are precisely those elements of 71 (X, =), whose loop-
representatives lift to loops at .

Definition. Let p : X — X be a covering map. We call T : X — X a covering
transformation if (i) T is a homeomorphism and (ii) p = p o T. The set of all
covering transformations forms a group under function composition, which is called
the automorphism group Aut(X —- X).

Example 5. With the covering maps defined as above, we have Aut(R <= S') = Z,
since every covering transformation is of the form T'(t) = ¢ + n for some n € Z.
Similarly, Aut(R? N T?) ~ Z x 7, since every covering transformation is of the
form T'(u,v) = (v +n,v 4+ m) for some n,m € Z.

Remark. Recall that for a subgroup H of a group G we define the normalizer of H
in G by No(H) ={g € G| gH = Hg}; it is the largest subgroup of G in which H is
normal.

We now come to an important result, which connects covering space theory to
fundamental groups:

Theorem. Let p: X — X be a covering map and let T € X, v € X with p(z) =
Consider G = m(X,x) and H = pyg(m(X,z)). Then there is a surjective homo-

morphism ¢ : Ng(H) — Aut(X - X)) whose kernel is equal to H. In particular,
Aut(X 25 X))~ Ng(H)/H.

Proof. For [a] € Ng(H) and § € X we define ¢([a])(y) as follows: choose any
continuous path f : [0,1] — X with f(0) = 7 and f(1) = 4. Let a: [0,1] — X
be the lift of o : [0,1] — X with @(0) = 7 and let f' : [0,1] — X be the lift of
po f:[0,1] - X with f/(0) = &(1). We define ¢([o])(y) = f'(1). (You might want
to sketch a diagram at this point.)

We have to show that

(i) ¢ is well-defined;
(i) ¢([o]) € Aut(X 2 X);

(iii) ¢ is a homomorphism;



(iv) ¢ is onto;
(v) ker ¢ = H.

(i) We wish to show that the definition of ¢ is independent of the choice of f. To this
end, let g : [0,1] — X be another continuous path with ¢(0) = z and ¢g(1) = 5. It is
our goal to show that f'(1) = ¢’(1). Put z = &(1), then

[a]m(X,7)a] = m (X, 2).

Applying px to this equation, we get

o] 'py(mi(X, 2))[a] = py(m (X, 2)).

However, by assumption, [a] 'py(m (X, 7))[a] = px(mi(X, 7)), so that

p#(ﬂ—l(Xa j)) = p#(ﬂ-l(X7 2))

This means that the elements of (X, z) which lift to loops at T are the same as
those which lift to loops at z. Consequently,

[po(f-9)] € pa(m(X, 7)) = pa(m(X, 2)).

In other words, [po (f - g)] = [po~] for some v : [0,1] — X with v(0) = (1) = z.
From Corollary 1 we now learn that (po f)-(pog) lifts to some loop at z. Since f’ and
¢ are the unique lifts of po f and po g at Z, respectively, we must have f'(1) = ¢'(1).

(ii) First of all not that, by definition, we have po ¢([a])(g) = p(f'(1)) = p(f(1 )) =
p(y). If N is an elementary neighborhood of y = p(y) and U; and U, the path
components of p~!(N) containing § and ¢([a])(y), respectively, we get ¢([a])(U;) =
Us,. To see this, all we have to do is choose the path f in the definition of ¢([a])(w )
for w € U; to always begin with the same path f running from f(0) =z to f(1) =
and concatenate it with a path A running from h(0) = y to h(1) = w which stays
in U;. This observation yields continuity of gb[ ]. Also, it is clear that ¢([a]) is the
inverse of ¢[a]. In summary, ¢[a] € Aut(X 2. X).

(iii) Let [a], [3] € Ng(H) and 7 € X. Let &, 3 : [0,1] — X be the lifts of the paths
a, (0 [0,1] — X with &(0) = $(0) = Z, respectively. Choose a path f : [0,1] — X
from f(0) = Z to f(1) = 7. Let f’ be the lift of p o f with f'(0) = 3(1). Then
o([8))(5) = f'(1). Let 3 be the lift of po 3 = 3 with 3(0) = &(1). Then & - §
is the lift of o+ § : [0,1] — X which starts at . Let f” be the lift of p o f with
f7(0) =a- 3'(1) = 3(1). (Again, a sketch of the situation might help here.) Then,
by definition,

¢([o] + [B))(H) = ol - B (@) = f*(1).

On the other hand, ' - f” is now the lift of po (5 - f') with begins at &(1), so that

o([a]) 0 o([B)(@) = e([a)) (f'(1) = 5"~ f"(1) = [" (1),
Hence, ¢([a] x [3]) = ¢([a]) o ¢([3]) and ¢ is indeed a homomorphism.
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(iv) Let T € Aut(X - X). Choose any continuous path & : [0,1] — X with
a(0) =z and &(1) = T(z). Put @« = poa. Then a(0) = po &(0) = p(z) = = and
a(l)y=poa(l) =poT(z) = p(x) = x. Therefore, [a] € m (X, x).

In fact, [a] € Ng(H). To see why, first recall from Part (i) above that

[o] " (m (X, 7)) [a] = py(m (X, T(2))). (1)

On the other hand, since T : X — )_(_is a homeomorphism, we know that it induces
an isomorphism 7T : w1 (X, Z) — m(X,T(7)). Consequently,

p(m(X, 7)) = (po T)y(m(X, 7)) = pp(Ty(m(X, 7)) = pp(m(X, T(2))).  (2)

Combining Equations (1) and (2) we get
o] 'py(m(X, 7)) ]a] = py(m (X, 7)),

which says that [a] € Ng(H).

If now j € X and f:[0,1] — X is any path with f(0) = z and f(1) = ¥, consider
f'=Tof. Since pof =po(Tof)=(poT)of =pof, weseethat f’is the lift of po f
with f(0) = T'o £(0) = T(z) = &(1). Therfore, o([a])(5) = /(1) = T(f(1)) = T(5).
Hence, T' = ¢(|a]), proving that ¢ is onto.

(v) Finally, ¢(]a]) = idx if and only if f(1) = f/(1), which by unique path lifting
can only occur when f = f’ that is, when &(0) = &(1). This is the case precisely
when « lifts to a loop at Z, i.e., when [a] € pu(m(X,Z)) = H. So, the kernel of ¢
equals H.
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