
The Partition Function and Ramanujan’s

5k + 4 Congruence

Milos Savic

Milos Savic is a Ball State senior majoring in Op-
tion 1–Mathematics. He has a minor in Computer Sci-
ence and Business. He also plays water polo and soccer
for Ball State. He wrote this thesis during his junior
year. The faculty advisor was Dr. John Lorch.

The unrestricted partition function, p(n), is a much-studied function in additive
number theory which also has uses in many other areas, including the golden
ratio (see [1]). The function serves as a counter for the number of ways a
positive integer can be split up into addends. For example, p(4) = 5 since the
number 4 can be split up in 5 ways, called partitions: 4, 3 + 1, 2 + 2, 2 + 1 + 1,
and 1 + 1 + 1 + 1. Even though the order of the addends in any particular
partition is of no concern when counting partitions, customarily one writes the
addends from largest to smallest. Partitions may be viewed geometrically using
Ferrers diagrams, a way of producing these functions graphically with points.

Figure 1

Figure 1 shows a Ferrers diagram of the num-
ber 7. Top to bottom, it shows 4 + 2 + 1, but from
left to right it reveals 3 + 2 + 1 + 1. This is the
best way of representing the function graphically,
and also produces 2 partitions with one picture, if
the picture is not symmetric with respect to the
diagonal, as shown in Figure 2.

The main part of my thesis deals with the so-
called 5k + 4 congruence, discovered by the famous
Indian mathematician Ramanujan. Ramanujan was
inspired by staring at a table of partitions constructed by MacMahon, who
found and listed the values for p(n) up to p(200) (see [2]). The congruence is
as follows: If a natural number n has the form 5k + 4, where k is a natural
number, then p(n) is divisible by 5 (that is, p(n) ≡ 0 (mod 5)). Many proofs
of this identity involve modular functions, but Kruyswijk has proved the 5k+4
congruence and other similar identities involving p(n) without any modular
functions. I am essentially following Kruyswijk’s steps as a basis for my thesis,
as is partially outlined in Apostol’s book (see [3] and [2], respectively).
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Figure 2

There are two essential tools used in proving the
5k+4 identity: Euler’s generating function for p(n)
and Euler’s Pentagonal Number Theorem. Euler’s
Generating Function, shown below,

∞∑
n=0

p(n)xn =
∞∏

m=1

1
1− xm

(1)

valid for |x| < 1, is very influential because it helps
us compute specific values of p(n) without explicitly
trying to figure out every combination. (Here, we define p(0) = 1.) In fact,
MacMahon, a mathematician known for his lists and tables of values, used this
function to help construct his list of values of p(n). To see why the product
given above generates values of the partition function, one first expresses each
term of the product as a geometric series, then multiplies these series together,
and finally gathers like powers of x. In the process, via the additive laws of ex-
ponents, one sees that gathering these powers of x is tantamount to computing
values of p(n).
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Figure 3

On the other hand, pentagonal numbers are
numbers formed from graphs such as in figure 3,
where the number of dots in the nth figure repre-
sent the nth pentagonal number ω(n). One notices
from the figures that a formula for ω(n) may be
obtained by summing the terms of an arithmetic
progression, yielding ω(n) = 3n2−n

2 . In the sequel,
we use this formula to extend ω(n) to a function on
the entire set of integers.

The Pentagonal Number Theorem relates the pentagonal numbers to the
reciprocal of Euler’s generating function. It states, for |x| < 1,

∞∑
m=1

(1− xm) = 1 +
∞∑

n=1

(−1)n(xω(n) + xω(−n)) (2)

There is a beautiful combinatorial proof based on trying to establish a one-
to-one correspondence between odd and even unequal partitions. This proof,
done by Franklin, is called by George Andrews “one of the truly remarkable
achievements of nineteenth-century American mathematicians.”

To conclude, I provide an outline of a proof of the 5k + 4 congruence. We
will need some notation: φ(x) =

∑∞
n=1(1 − xn) and α = e2πi/5. Throughout,

x represents a complex number with |x| < 1. To begin, using elementary facts
about integer divisibility and complex n-th roots of unity, one may show that

k∏
h=1

(1− xne2πinh/k) =
{

1− xnk if (n, k) = 1
(1− xn)k if k|n

Using this equation in the case k = 5, one deduces
∞∏

n=1

5∏
h=1

(1− xnαh) =
φ(x5)6

φ(x25)
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and we can manipulate the last equation to obtain

∞∑
m=0

p(m)xm =
φ(x5)6

φ(x25)

4∏
h=1

∞∏
n=1

(1− xnαh)

by peeling off the portion of the product corresponding to h = 5 in the case
k = 5 and applying the Generating Function for p(n).

To finish the proof, one applies the Pentagonal Number Theorem to the
product in the right hand side of the last equation and then discards all but
the terms type 4 (that is, terms where the power on x has remainder 4 upon
division by 5), to obtain:

∞∑
m=0

p(5m + 4)x5m+4 = V4
φ(x25)
φ(x5)6

where V4 represents the type 4 terms from
4∏

h=1

∞∏
n=1

(1 − xnαh). With some

more work we discover that V4 = 5x4 φ(x25)4, and by replacing x5 by x, we
obtain

∞∑
m=0

p(5m + 4)xm = 5
φ(x5)5

φ(x)6

Since the coefficients of the series in the right-hand side of the previous
equation are all divisible by 5, we conclude that p(5m + 4) is divisible by 5 for
all numbers m.
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