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Quantum mechanics is a scientific theory that seeks to describe atomic and
subatomic particles (or quantum particles) as well as the interaction among
them. Such particles include electrons, protons, neutrons, and photons. In
classical mechanics, a particle’s future state is described with certainty once
its present state is known. At any given moment, its momentum and posi-
tion are determined with certainty. In quantum mechanics, its future state
is described probabilistically. Instead of a single momentum, a particle can
assume a simultaneous range of momenta, and instead of a single position, it
can take a simultaneous range of positions. Since the product of these ranges
is no less than a specific positive universal constant, a decrease in the range
of its position forces an increase in the range of momentum and vice versa. It
is precisely this effect of quantum particles that quantum computing seeks to
exploit in order to manipulate a huge amount of information simultaneously.
Quantum computing is a mathematical theory currently being developed to
give a theoretical basis for building a “quantum computer,” which is envi-
sioned to be faster than any classical computer to date. Quantum computing
is based on the principles of quantum mechanics. In this article we will look at
the postulates of quantum mechanics upon which quantum computing is based.

A physical system consisting of one or more quantum particles will be called
a quantum system. A quantum system will be called isolated if it does not
interact with other quantum systems.

At any given instant, a quantum system will be in a certain “state.” The
first postulate deals with a way of representing states of a quantum system:

Postulate 1. Associated with any isolated quantum system is a complex Hilbert
space. A “state” in the system is represented by a unit vector in this vector
space.

While an infinite dimensional Hilbert space may be needed to model a quan-
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tum system completely, for simplicity we will only use finite dimensional Hilbert
spaces to describe quantum systems that will be used in quantum computa-
tions. In quantum mechanics, the so called Dirac notation is used to represent
vectors. In this notation a vector u in a complex Hilbert spaceH is denoted by a
Dirac ket |u〉. The simplest quantum mechanical system is the two-dimensional
complex Hilbert space C2. In this vector space, the inner product between two
vectors z = (z1, z2) and w = (w1, w2), denoted 〈z|w〉, is given by

〈z|w〉 = z̄1w1 + z̄2w2.

If we let

|0〉 =
[

1
0

]
and |1〉 =

[
0
1

]
,

then the vectors |0〉 and |1〉 form an orthonormal basis of C2. An arbitrary
state |Ψ〉 can be realized as a linear combination (or superposition) of |0〉 and
|1〉. Thus, |Ψ〉 = a|0〉 + b|1〉 for some complex numbers a and b satisfying
|a|2 + |b|2 = 1. This represents a quantum analogue of the classical bit called a
quantum bit, or qubit, and is used as the smallest unit of quantum information.

Before we go any farther, we recall some definitions from Linear Algebra.
Consider an n× n matrix A over the complex field C. The complex conjugate
of A, denoted by A∗, is obtained by taking the complex conjugate of every
entry in A. If A is real, then A = A∗. We shall let A† stand for the transpose
of the complex conjugate.

Definition.

1. A is said to be normal if and only if AA† = A†A.

2. A is said to be Hermitian if and only if A† = A. All eigenvalues of a
Hermitian matrix are real.

3. A is said to be unitary if AA† = I. All eigenvalues of a unitary matrix
have absolute value one.
We note that Hermitian and unitary matrices are normal matrices. As an
example, note that the following matrix is both unitary and Hermitian.[

0 −i
i 0

]
.

4. While the tensor product of vector spaces will be useful in a subsequent
discussion, here we will confine ourselves to the computational definition
of the tensor product between two qubits, and refer the reader to the
references [2] and [1] instead. The tensor product between two quibits

|x〉 =
[
a
b

]
, |y〉 =

[
c
d

]
,

denoted by |x〉 ⊗ |y〉, or |xy〉 for short, is the vector in C4 given as

|x〉 ⊗ |y〉 =


ac
ad
bc
bd

 .
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The following is a standard theorem in Linear Algebra and we will need it
to describe one of the postulates below. To this end let us recall the following
concept from Linear Algebra. An n × n matrix B is said to be orthogonally
diagonalizable if and only if Cn has an orthogonal basis consisting of eigenvec-
tors of B.

Spectral Decomposition Theorem
An n×n matrix A is orthogonally diagonalizable if and only if A is normal.

We will be primarily interested in Hermitian matrices. Let A be a Hermi-
tian matrix and suppose {wj : j = 1, 2, · · ·n} is an orthonormal basis of Cn

consisting of egenvectors of A. Then

A =
n∑

j=1

λj |wj〉〈wj |, (1)

where λj is the eigenvalue of A corresponding to the eigenvector wj . Here we
have used the “bra” notation 〈w| of Dirac to denote the map 〈w| : Cn → C
given by

〈w|(|u〉) := 〈w|u〉, for any vector u ∈ Cn.

Note that
n∑

j=1

|wj〉〈wj | = I,

where I is the n × n identity matrix. Also note that for each unit vector |w〉,
the matrix (operator) |w〉〈w| is a projection of Cn onto the subspace spanned

by the single vector |w〉. As an example, if |w〉 =
[
a
b

]
, then

|w〉〈w| =
[
a
b

] [
ā b̄

]
=

[
|a|2 ab̄
āb |b|2

]
.

Thus, the decomposition (1) of A given above expresses A as a linear combi-
nation of (orthogonal) projections Pj of Cn onto appropriate eigenspaces of A.

As an example we have the spectral decomposition[
0 1
1 0

]
= 1 · P1 + (−1) · P2

= 1 · 1
2

[
1 1
1 1

]
+ (−1) · 1

2

[
1 −1

−1 1

]
The second postulate deals with observables and their measurements. An

observable is a property of a quantum system which in principle can be mea-
sured. This postulate highlights one of the basic features of quantum mechan-
ics: outcomes of measurements can only be predicted probabilistically.

Postulate 2. In quantum mechanics, an observable is represented by a Her-
mitian matrix in a complex Hilbert space. The numerical outcome of a mea-
surement of an observable A is an eigenvalue λk of A.
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Suppose the observable A is decomposed into appropriate projections as in
the Spectral Decomposition Theorem:

A = λ1P1 + · · ·+ λnPn.

Since A is Hermitian, recall that all its eigenvalues are real. Immediately
following a measurement, the quantum state becomes an eigenvector of A. If
the pre-measurement quantum state is |ψ〉, then after the measurement, the
outcome λk is obtained with probability

Prob(λk) = 〈ψ|Pk|ψ〉

where 〈ψ|Pk|ψ〉 denotes the inner product between |ψ〉 and Pk|ψ〉.

If the outcome λk is realized, then the post measurement quantum state
becomes

Pk|ψ〉√
Prob(λk)

.

The expected value of the measurement is therefore

E(A) =
∑

k

λkProb(λk) =
∑

k

λk〈ψ|Pk|ψ〉 = 〈ψ|(
∑

k

λkPk)|ψ〉 = 〈ψ|A|ψ〉

by the spectral decomposition theorem.
As an example, we consider the observable in C2 given by

A =
[

2 0
0 −3

]
= 2P1 + (−3)P2 = 2|0〉〈0|+ (−3)|1〉〈1|.

The outcomes of a measurement of this observable are λ1 = 2 and λ2 = −3.
If the pre-measurement quantum state is |Ψ〉 = a|0〉+ b|1〉, then the outcomes
are obtained with probabilities

Prob(2) = |a|2, Prob(−3) = |b|2,

and the expected value of the measurement is

E(A) = 2|a|2 − 3|b|2.

The third postulate deals with the evolution of a system over time.

Postulate 3. The evolution of a closed quantum system is described by a
unitary operator. The state |ψ〉 of a system at time t1 is related to the state
|ψ′〉 of a system at time t2 by a unitary operator U , which depends only on the
times t1 and t2, by |ψ′〉 = U |ψ〉.

The above version of Postulate 3 deals with the evolution of a system over
discrete time. A more refined version can be given to describe the evolution
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of a quantum system in continuous time. This is described by the Schrödinger
equation

i~
d |ψ(t)〉
d t

= H|ψ(t)〉

where H is a Hermitian matrix known as the Hamiltonian of the quantum
system, ~ = h/(2π), and h is Planck’s constant. If H is a time independent
Hamiltonian, then |ψ(t)〉 = exp(− i

~Ht)|C〉, where |C〉 is a constant vector, is
a general solution of the Schrödinger equation. Thus at times t1 and t2 we
obtain |ψ(t2)〉 = U |ψ(t1)〉 where U is the unitary matrix exp(− i

~H(t2 − t1)).
This shows that the Schrödinger equation models the way a state at time t1
is related to the state at a later time t2, as given in Postulate 3. The Hamil-
tonian H encodes the energy configuration of a given quantum system. Being
Hermitian, H has a spectral decomposition H =

∑n
k=1 τkPk with eigenvalues

(energy) τk. The corresponding eigenvectors are called the eigenstates of the
Hamiltonian. The smallest eigenvalue corresponds to the smallest energy level,
and its associated eigenvectors are called ground states.

Consider the example of a single qubit system with a Hamiltonian given by

H =
[

0 1
1 0

]
.

It can easily be seen that the eigenvalues of H are τk = ±1 with corresponding
energy eigenstates

|0〉 ± |1〉√
2

.

The eigenstate which corresponds to the energy level τk = −1 is the ground
state of the Hamiltonian.

The fourth and final postulate that will be presented deals with being able
to combine multiple systems.

Postulate 4. If n physical systems are represented by n complex Hilbert spaces
H1,H2, ...,Hn, then the composite physical system is represented by the tensor
product H1 ⊗H2 ⊗ ...⊗Hn.

If, for example, we consider n physical systems each of which is a two-state
system, and the kth physical system is prepared in the qubit |ψk〉, then the joint
state of the composite system is prepared in the state |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉.
In the composite system we consider all possible superpositions of such states.

When we start dealing with composite physical systems and superpositions,
we begin to see how a quantum computer is much more efficient than a classical
computer. In a classical memory register, n bits can represent one integer k
with 0 ≤ k ≤ 2n−1. Due to superposition, however, it is possible for n qubits to
represent all of the 2n integers in that range simultaneously as |ψ1〉⊗ ...⊗|ψn〉.
Such a tensor product of n qubits is called a quantum memory register of size
n. Information is stored in these registers in binary form.

Let |a〉 stand for the tensor product

|ak−1〉 ⊗ |ak−2〉 ⊗ ...⊗ |a1〉 ⊗ |a0〉,
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which represents the number

a =
k−1∑
j=0

aj2j

where each aj ∈ {0, 1}. From this definition, a quantum register of size three
can store individual numbers such as 6 and 7 as

|1〉 ⊗ |1〉 ⊗ |0〉 = 0 · 20 + 1 · 21 + 1 · 22 = 6,

|1〉 ⊗ |1〉 ⊗ |1〉 = 1 · 20 + 1 · 21 + 1 · 22 = 7.

Utilizing superposition, the memory register can store both of these integers
simultaneously as

|1〉 ⊗ |1〉 ⊗ |0〉+ |1〉√
2

.

In fact, a quantum memory register of size three can store the eight integers 0
to 7 at the same time by putting each qubit into the above superposition, thus
obtaining the memory register

|0〉+ |1〉√
2

⊗ |0〉+ |1〉√
2

⊗ |0〉+ |1〉√
2

.

The above preparations, as well as other manipulations on qubits, must be
performed by unitary operations. An example of this is a quantum logic gate,
which is a device that performs a fixed unitary operation on selected qubits.
Some examples of quantum logic gates which operate on a single qubit are
the Hadmarad gate H and the Phase Shift gate θ. These gates are defined
respectively as

H =
1√
2

[
1 1
1 −1

]
, θ =

[
1 0
0 eiθ

]
and their respective unitary operations on the qubit |x〉 are represented schemat-
ically as

|x〉 −−−−− H −−−−− 1√
2

((−1)x|x〉+ |1− x〉) ,

|x〉 −−−−− •
θ

−−−−− eixθ|x〉.

Equipped with the above definitions, as well as Euler’s formula eiθ = cos θ+
i sin θ, a little computation shows that

|0〉 −−−−− H −−−−− •
2θ

−−−−− H −−−−− •
π
2 +α

−−−−− cos θ|0〉+ eiα sin θ|1〉.

Thus, these two gates are enough to perform any unitary operation on a single
qubit (modulo a global phase - this global phase can be seen explicitly when
one carries out the computation to get the above transformation).
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Therefore, the Hadamard gate and the Phase Shift gate can be used in com-
bination to transform the input state |0〉 ⊗ · · · ⊗ |0〉 of the n-qubit register into
any state of the type |ψ1〉⊗ ...⊗ |ψn〉 where |ψk〉 is any arbitrary superposition
of |0〉 and |1〉. These are special n-qubit states, called separable states, i.e., the
register can be written as a tensor product of single qubits.

In general, however, a quantum register of size greater than or equal to two
can be prepared in states that are not separable - these are known as entangled
states. As an example, consider the two-qubit states given by α|00〉 + β|01〉
and α|00〉 + β|11〉. The first state is separable since it can be written in the
form |0〉 ⊗ (α|0〉 + β|1〉), which is simply a tensor product between two single
qubits. The second state, however, is entangled as it can not be written as a
tensor product between single qubits.

Entangled states have many important applications in quantum teleporta-
tion and cryptography. So, it would be useful to create a quantum logic gate
which would be able to entangle any separable two-qubit system. An example
of such an operator is the Controlled-Not (C-Not) gate, given by the unitary
matrix

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
A schematic representation of the C-Not gate acting on qubit |xy〉, x, y ∈ {0, 1}
is shown below.

|x〉 −−−−−− • −−−−−− |x〉

|y〉 −−−−−−
⊕

−−−−−− |x⊕ y〉

The operation ⊕ denotes addition modulo 2 (exclusive or). Given any two
qubits, the C-Not gate flips the second (target) qubit if the first (control) qubit
is |1〉, and does nothing if the control qubit is |0〉. As a result of this behavior,
the C-Not gate transforms the two-qubit separable state |00〉 + |01〉 into the
entangled state |00〉+ |11〉.

This article is a brief introduction to the postulates of quantum mechanics
as they relate to quantum computing. It was based on a presentation given
by the author, in collaboration with Dr. Ahmed Mohammed, for the student-
faculty colloquium (Maths 497) during the fall semester of 2002 at Ball State
University. Based on these postulates, we later explored in our seminar how a
quantum computer might one day be built and what it might be able to do that
classical computers cannot. For more information, see the references below.
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