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Abstract—With its recent adoption by the International
Organization for Standardization, we foresee that UML will
be systematically used for object-oriented modeling in industry.
UML activity diagrams have been typically used to model soft-
ware and business processes. Due to its semi-formal semantics
and high complexity, its advanced constructs such as expansion
regions, interruptible regions, object nodes, time events, and
compound activities are rarely used in practice. There has
been significant work on formalizing UML activity diagrams in
terms of its semantic domain: Petri net. However, none address
the recent advanced constructs it offers. In this paper, we
define the semantics of UML activity diagram using a rule-
based model transformation. Verification and validation of the
UML activity diagram model is then achieved by simulating
and analyzing the Petri net model. We illustrate our technique
by using an extension of UML activity diagram to facilitate
project management tasks such as scheduling, cost estimation,
and resource allocation.

Keywords-UML activity diagram; Petri net; model transfor-
mation.

I. INTRODUCTION

UML activity diagram (AD) is a very widespread notation
in requirement engineering, especially used to model soft-
ware and business processes [1], [2]. In 2001, UML 1.4
informally defined AD with a state machine-like seman-
tics. Since the UML 2.0 in 2005, AD was redefined with
semantics in terms of Petri nets (PN) to essentially allow
parallel flows. Recently in April 2012, the International
Organization for Standardization (ISO) adopted UML 2.4.1
which included minor changes to AD [3]. Our work is
based on that reference. Although the semantics of AD is
described in natural language, a precise formal semantics
is still missing. This hampers the understanding, analysis,
and interpretation of AD instances. This is of paramount
importance in requirement engineering where users are often
business analysts and not software engineers.

Many works in the literature (e.g., [4], [5], [6], [7], [8],
[9]) have formalized the semantics of UML2 AD, more
specifically in terms of PN and variations of it. However,
they are all restricted to mostly basic AD elements (action,
fork, join, branch, merge, decision) and do not take into
considerations more complex constructs such as expansion

regions, interruptible regions, object nodes, time events, and
compound activities, which is the main reason why they
are rarely used in practice. Furthermore, with its recent
ISO adoption, we foresee that AD will be systematically
used for requirement engineering in industry. We therefore
propose a pragmatic definition of the operational semantics
of the complete AD formalism in terms of PN. We use
a rule-based model transformation approach to define the
translation process. Consequently, we execute AD models
by simulating the underlying PN model.

In Section II, we provide the relevant meta-models of AD
and PN for semantic translation and describe the transfor-
mation. In Section III, we propose an extension of AD as
a domain-specific modeling language for project managers
and show how the transformation can be used to facilitate
his tasks. Section IV discusses related work and we conclude
in Section V.

II. THE UML 2 ACTIVITY DIAGRAMS FORMALISM

In this section, we describe a precise definition of the
semantics of AD in terms of PN.

A. Language Definition

The input of the translation process is the AD language
whose meta-model is depicted in Figure 1 and the output
is the PN language whose meta-model is depicted in Fig-
ure 2. The translation focuses on the essential AD elements
with semantics. That is, we have purposely omitted those
elements in the ISO reference only used for syntax. We also
do not take into consideration the interaction between AD
elements and the behavior of the objects flowing (from the
BasicBehavior package) and treat objects as simple tokens.
Additionally, we have encapsulated all ExecutableNodes
under StructuredActivities since they define specific inter-
actions with objects. The AD meta-model in Figure 1 is
therefore an abstraction of the full ISO version, focusing
on the elements with essential operational semantics (or
token rules in [3]). Note that the meta-model is augmented
with additional constraints such as: final nodes and accept
signal nodes only have incoming activity edges, whereas
initial nodes and signal nodes only have outgoing edges.
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Also, activities can only be connected via object nodes.
Additionally, if multiple edges are outgoing from an action,
then object nodes must be used to distinguish among them.
Finally, the guard condition in the activity edge is used only
for selecting the suitable branch at decision nodes.

The reference manual claims that the semantic domain of
AD is PN. Therefore we tried as much as possible to satisfy
that claim by using pure place/transition nets. However, as
the subsequent rules will show, inhibitor arcs are required at
minimum to handle complex AD elements such as expansion
and interruptible regions. As defined in [10]: an inhibitor
arc connects a place to a transition and is represented by a
dashed line terminating with a small circle. It disables the
transition when the input place has at least one token and
enables it otherwise if other input places have at least one
token per arc weight. This makes PN Turing complete and,
by transitivity, AD is Turing complete. Figure 2 depicts the
meta-model of PN we considered.

B. Semantic Translation

The semantic translation is modeled as a model transfor-
mation mapping AD elements to behaviorally equivalent PN
counterparts. The modeling language and test models are de-
fined using AToM3 [11]. The transformation is implemented
in Py-T-Core [12], a domain-specific graph transformation
language. It consists of a set of rules and a control structure
to schedule their execution. We chose to define the semantics
of AD using rule-based descriptions as they allow specifying
the transformation as a set of operational rewriting rules
instead of using imperative programming languages.

The rules are shown in Figures 3–8. We use the visual
concrete syntax of MoTif [13] where the central compart-
ment is the left-hand side (LHS), the compartment on the
right of the arrow head is the right-hand side (RHS) and the
compartment(s) on the left of dashed lines are the negative
application condition(s) (NAC). The LHS defines the pre-
condition pattern that must be found in the input model
to apply the rule. The NAC defines a pre-condition pattern
that shall not be present, inhibiting the application of the
rule. The right-hand side (RHS) imposes the post-condition
pattern to be found after the rule was applied. Numeric
labels are used to uniquely identify different elements across
compartments. Generic links are used as explicit traceability
links, connecting any two elements from any meta-model.

This transformation is organized in phases. Each phase
consists of a set of rules that are executed in an arbitrary
order until they are all applied. The 11 required phases are
shown in Table I. A rule annotated with a F is applied once
for all matches of the pre-condition pattern found in the
model. A rule annotated with a ∗ is applied iteratively as long
as matches are found. We now describe each rule following
their execution order.

1) Basic Elements: Figure 3 depicts the rules of the first
phase, translating basic elements to their PN counterparts.
Each action node is mapped to an entry transition, a pro-
cessing place and an exit transition, as in [14]. The entry
transition initiates the execution of the action and the exit
transition terminates its execution. This representation satis-
fies the “eventual execution of an action upon receiving input
tokens”. Fork, join, object, and activity parameter nodes are
mapped to a single transition since they are transient in
AD [8]. Activity final, flow final, and signal nodes are only
mapped to an entry transition and processing place, since
they mark the end of an activity. Conversely, time event and
accept signal nodes are mapped to a processing place and
an exit transition, since they cannot be the target of edges.
The initial node is mapped in the same way, but with a
token added in the processing place to initiate the execution.
Decision nodes are simply mapped to a set of transitions.
Each branch is mapped to a different transition to force that
only one of them becomes fireable at run-time. Merge nodes
are treated similarly, but instead of creating branches, they
merge them. Note how in the DecisionMapping rule, the
activity node element will be matched to an element from
any of its sub-types.

2) Edge Connections: Figure 4 depicts the rules of the
following two phases that handle edge connections. In
general, each activity edge (and exception edge) is mapped
to a place between the transitions of its source and target AD
elements. It may very well happen that some AD elements
are connected to more than one element. In this case, the
rules of the third phase cover the remaining edges. Since
the ActivityEdgeBetweenObjectNode&ActionMapping rule
is applied iteratively, the case where actions have multiple
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object nodes as input and/or output is correctly handled. The
same is true for activity parameter nodes. Join nodes have
more than one input and forks have more than one output.
Also decision and merge nodes may have multiple input
and output edges respectively. This is why their respective
rules are also iterative. Signal and accept signal nodes are
a special case since they are only conceptually linked by
their signal identifier. Therefore a transition is required
between the corresponding processing places. Note that the
ActivityEdgeMapping rule is executed after all these rules
again in order to cover any remaining required connections
for the multiple inputs and outputs case.

3) Interruptible Regions: Figure 5 depicts the only rule
of the fifth phase that handles interruptible regions. An
interruptible region contains a particular accept signal node
such that, when it receives the appropriate signal, any
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Figure 5. The third set of rules: Interruptible region.
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processing activity node inside the region is interrupted.
The accept signal node is then executed and the control
follows in the action connected to it. Therefore, when an
interrupt signal occurs, tokens in all places corresponding to
an AD element in the region must be cleared. The transition
labeled 7 in Figure 5 is responsible for consuming all these
tokens. The inhibitor arcs are required in order to force this
transition to be fired first and then the transition labeled 3
can fire.

4) Expansion Regions: The remaining phases deal with
expansion regions. There are three kinds of expansion re-
gions. In an iterative expansion region, only one set of
inputs (singleton in case of one input expansion node) can
be processed by the region at a time. The remaining sets
of input are queued in the input expansion node(s). In a
parallel expansion region, multiple sets of inputs can be
processed concurrently in the region. A stream expansion
region behaves similarly to the parallel one, but it receives a
continuous input flow. Furthermore, tokens are accumulated
in the output expansion node(s) until all are processed.
Only then are they output from the expansion region. In
Figure 6, all three kinds of expansion regions are mapped
to a transition. This transition is used to control the input
flow.

For the iterative case, additional mapping rules are re-
quired to satisfy the blocking condition on the input, as
shown in Figure 7. For that, an extra transition is added to
the output of the expansion region together with a one-token
place. The output expansion nodes must also be controlled
so their corresponding transitions are fired together. Special
care must be taken for activity final and flow final nodes
inside an iterative expansion region, since their PN counter-
part does not output any token. The token present in their
processing place must also enable the output transition.
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The next phase (ExpansionNodeMapping rule in Figure 8)
maps expansion nodes of parallel and stream expansion
regions. Note that the NAC of the rule prevents from
mapping the ones of iterative expansion regions that were
already mapped in the previous phase. In the last phase, the
ExpansionRegionOutputBlocker rule in Figure 8 ensures the
appropriate output blocking semantics. All expansion nodes
must consume all tokens inside them to output. For that, an
inhibitor arc is required to prevent the output transition from
firing if there are still tokens in any places inside the region.
For the stream case, recall that there is a continuous flow
of input to the expansion region. Therefore an additional
inhibitor arc must make sure that all possible input is
processed before sending the output out of the expansion
region node.

The presented translation results in PN models where only
one transition is fireable at the beginning (corresponding to
the initial node). But this does not mean that there will not
be concurrent flows, since more tokens may be produced

Table I
SCHEDULING OF THE TRANSLATION RULES

Phase Rule

1 ActionNodeMappingF , TimeEventMappingF ,
InitialNodeMappingF , ForkNodeMappingF ,
JoinNodeMappingF , ObjectNodeMappingF ,
ActivityParameterNodeMappingF ,
DecisionMappingF , MergeMappingF ,
ActivityFinalMappingF , FlowFinalMappingF ,
SignalMappingF , AcceptSignalMappingF

2 ActivityEdgeMapping∗, ExceptionEdgeMapping∗

3 ActivityEdgeBetweenObjectNode&ActionMapping∗,
JoinInputEdgesMapping∗,
ForkOutputEdgesMapping∗, DecisionInputMapping∗,
MergeOutputMapping∗, MatchSignals∗

4 ActivityEdgeMapping∗

5 ClearInterruptibleRegion∗

6 ExpansionRegionMappingF

7 ExpansionRegionInputs∗

8 IterativeExpansionRegionMappingF

9 IterativeExpansionRegionOutputs∗,
IterativeExpansionRegionOutputsForActivityFinal∗,
IterativeExpansionRegionOutputsForFlowFinal∗

10 ExpansionNodeMappingF

11 ExpansionRegionOutputBlocker∗,
StreamExpansionRegionOutputBlocker∗

from e.g., fork nodes and multiple object nodes. Note that
an Activity is not mapped to any PN counterpart. That is
because its operational semantics is defined by its enclosed
action nodes. The transformation also assumes that edges
adjacent to an activity are connected through object nodes
only. Activity partitions (or swimlanes) are simply used
for visual convenience and do not have any operational
semantics.

C. Operational Semantics

We are now able to translate any AD model to a behav-
iorally equivalent PN model. In order to simulate the AD
model, we design a PN simulator in MoTif that defines the
operational semantics of the PN model and, by transitivity,
the operational semantics of the AD it was translated from.
The simulator is extended from [15] to handle inhibitor arcs
with a simple rule that makes sure no places are inhibiting
a fireable transition. We also adapt the animation rules to
highlight an AD element only when tokens are present in
its processing place. AToM3 then automatically takes care
of updating the respective concrete syntax.

Figure 9 shows the rules used for the simulation. As
in [15], the transformation executes in an infinite loop.
The first rule FindTransition (which is a query consisting
of solely a LHS) loops over each transition in the model.
The transition found by this rule is assigned to a pivot
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Figure 9. The rules for the simulation of PN and animation of AD.

variable transition to be referred by subsequent rules.
We then must ensure that only firing transitions will be
processed. To find enabled transitions, we iterate through
all transitions until one has been found that does not satisfy
the pattern of a non-firing transition. This is done by
iterating over every arc input to the selected transition and,
if the IsNonFiring rule cannot succeed, the transition is
fireable. An additional rule NotInhibited ensures there are
no places inhibiting the transition. If the selected transition
passed the previous two conditions, tokens are transferred
along this transition as depicted by rules ConsumeTokens
and ProduceTokens. When the tokens are produced in a
processing place, only the corresponding AD element is
highlighted to animate the AD. AToM3 then automatically
takes care of updating the respective concrete syntax. After
that, the first FindTransition rule is applied again recursively,
by re-matching the new model looking for a transition given
the new marking. This control flow goes on until no more
transitions are fireable.

D. Analysis

Verification of AD is now possible by analyzing the un-
derlying PN model. For example reachability and deadlock
analysis can be performed as in [7] and in [9]. Figure 10
depicts a syntactically valid AD model although it has an
incorrect design: a decision node is misused with a join node
since only one branch will ever be executed and never both.
A quick analysis of its equivalent PN clearly shows how the
deadlock situation will occur.

In our prototype, we have developed a Petri Net Markup
Language (PNML) [16] exporter from AToM3, which is the
standard interchange format for PN models in XML. We
have used the Pipe [17] tool to analyze our test models to
detect deadlock and safety of the PN. In the future, we plan
to incorporate static PN analysis techniques in the AD inter-
preter to reveal properties of the model instantly. This is very
relevant in requirement engineering to provide automated
support and instantaneous feed-back to the designer of an
AD.
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Figure 10. A deadlock scenario in AD detectable by its PN equivalent.

III. EXTENSION FOR PROJECT MANAGEMENT

We now illustrate the benefits of precisely defining the
operational semantics of AD with an application in project
management. One way is to design a domain-specific lan-
guage based on AD to model development activities in a
software project [2]. This has many advantages over using
regular tools mostly based on spreadsheets, such as:

• the relationship between different activities is explicitly
represented;

• a central model can be re-used for scheduling, cost
estimation, and resource allocation;

• the simulation of the model facilitates debugging and
understanding the overview of the project and improves
the communication between customers, analysts, and
managers.

Alternatively, one could use UML profiles to extend the
AD meta-model for project management, but in general
UML profiles require more effort for simple extensions in
contrast with building a new meta-model which is much
more compact [18].

We propose to extend the AD meta-model with artifacts
specific to project management. Figure 11 depicts these
modifications and additions. Actions are augmented with
duration. The time unit is assumed to be in hours. Human
resources can be assigned to specific actions with full or
partial availability. The use of human and material resources
has an associated cost.

These additions allow us to calculate a prediction of the
total project cost and time. A static calculation by summing
the actions’ durations (taking into consideration overlaps)
can give an rough estimate of the timespan of the project.
However, the simulation of the extended AD model can
increase the accuracy of this estimate. That is because, in
practice, resource re-allocation is often a reality. The mod-
eler can take these dynamics into consideration by freeing,
adding, or replacing human resources and materials at any
time during the simulation. This feature is directly available
in our prototype since AToM3 allows a transformation to run
continuously or step-wise. Furthermore, when choices have



Resource

ActionNode

duration : integer

Human

hourlyRate : double

Material

cost : double

name : string

dedicated

ratio : integer

1*
1 *

usedBy

0..1
0..1

ProjectStats

totalTime : integer

totalCost : double

Figure 11. Extension to the AD meta-model.

to be made (e.g., branches, decisions) the transformation
can be configured to halt and let the user decide. We have
extended the simulator with a rule at the end of the loop
that updates the total time and cost of the ProjectStats when
the exit transition of an action node is fired. An additional
rule enforces that the entry transition of an action is fireable
only if it is allocated at least one human resource.

A concrete example of an extended AD model repre-
senting a revision process adapted from [19] is shown
in Figure 12. Note how for example, action “A1” has human
resources and materials attached to it. Figure 13 shows the
PN model resulting from the model transformation defined
in Section II-B.

IV. RELATED WORK

Since the semantics of UML has deeply changed in
version 2.0, we concentrate the comparison with prior works
that are relevant to UML 2.x only. There have been numer-
ous studies focusing on the mapping from AD to PN. This
is by no means an exhaustive list. However, their main issue
was that they only considered basic AD elements, because
of the complexity of its more advanced constructs.

Störrle has had a significant amount of contribution in this
semantic mapping. He is one of the few to have also con-
sidered advanced AD elements. While his works are based
on the early stages of UML 2 (2004-2005), we have focused
on the recent ISO adoption of UML 2.4.1 which includes
slight variations and precisions. In [7], he defined a mapping
for basic AD elements to colored PN. The main motivation
was to give means to validate AD models by running their
equivalent colored PN model. Some preliminary verification
was performed through reachability analysis. However, both
validation and verification results were not mapped back
to the AD model as we do. In [5], Störrle defines a new
mapping to procedural PN. This allowed him to reason about
the interaction between activity nodes and token objects. He
also worked on the semantics of exceptions and interruptible
regions in [4]. However, the approach he proposes is not
compatible with the description of the ISO reference, since
tokens are still present in the interruptible region. In fact,
he stated that to fulfill this condition, “flush-arcs would be
required which makes things more complex”. Our translation
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makes rather simple use of inhibitor arcs. In [6], he defined
the semantics of expansion regions in terms of colored PN.
His approach is more fine grained than ours: collections of
input are split during the process and re-assembled in the
appropriate order before they are output.

Han et al. [9] again only concentrated on mapping
basic AD elements to PN. Actions are mapped to an entry
transition and a processing place, which is an alternative
representation to ours. They also use reachability analysis
to validate structural properties of AD, such as termination.

We are not the first to define the translation using model
transformation. Staines [8] used triple graph grammars
(TGG), mapping only basic AD elements to PN. Actions
were mapped to transitions, which leads to incompatibili-
ties when dealing with expansion regions. One advantage
of using TGG is that the transformation is bi-directional.
Rafe et al. [20] defined the operational semantics of AD
as an in-place transformation defined in AGG. However,
the simulation expresses only a control flow on basic AD
elements. They also used model checking techniques to
verify properties of AD expressed in temporal logic.

While we execute AD models in terms of a PN simulator,
the work in [21] implemented a dedicated simulator in
ARENA to simulate a restricted subset of AD. Specific
details of the implementation were not available to us.
Finally, Vitolins et al. [22] created an AD virtual machine
to clearly visualize the movement of tokens in AD models.
The simulator is hard-coded in an imperative programming
language, whereas ours is declarative and entirely modeled,
which has the advantage of being better understood by non-
programmers (analysts and project managers) and indepen-
dent from the platform it is deployed on.

V. CONCLUSION

We hope that, with the proposed work, stakeholders
involved in the requirement engineering process will not use
AD as a “convenient notation” but rather as a language with
a precisely defined semantics they can understand. For that
reason, we translated the full UML 2.4.1 activity diagram
adopted by ISO to Petri net, as dictated in the reference man-
ual. We used a rule-based model transformation approach to
define the translation as well as its operational semantics.
The execution of AD models is done by simulating the
underlying PN model. As an application, we have shown
how this approach benefits the tasks of project managers
in optimally allocating resources and seeing the immediate
effects on cost and time estimates.

We are planning to incorporate static PN analysis tech-
niques (inspired from [7], [9] and [20]) and interpret them
automatically in terms of the AD model. We will also work
on exporting the extended AD models scheduling tools,
such as to Microsoft Project (MS Project) [23]. Figure 14
shows a snapshot, from an early prototype, of the Gantt
chart corresponding to the AD model of Figure 12. The goal



Figure 14. A snapshot of the AD model converted to MS Project.

is to assist project managers in developing plans, assigning
resources and tracking activities. We are planning to perform
user studies to empirically compare the effect of using AD
for project management versus regular tools, such as MS
Project.
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