
Design Pattern Oriented Development

of Model Transformations

Huseyin Ergina, Eugene Syrianib, Jeff Graya

aUniversity of Alabama, Tuscaloosa, Alabama, U.S.A.
bUniversity of Montreal, Montreal, Canada

Abstract

Model-driven engineering (MDE) is considered a well-established software
development approach that uses abstraction to bridge the gap between the
problem space and the software implementation. In MDE, many problems
are solved using model transformation, which is a paradigm that manipulates
high-level models to translate, evolve, or simulate them. However, the devel-
opment of a model transformation for a specific problem is still a hard task.
The main reason is the lack of a development process where transformations
must be designed before implemented. Design patterns provide experien-
tial reuse to software engineers when faced with recurring problems. Given
their various contexts of application, model transformations may also benefit
from design patterns. Although several studies have proposed design pat-
terns for model transformation, there is still no accepted common language
to express transformation patterns. Therefore, we propose a semi-formal way
to describe model transformation design patterns that is independent from
a specific transformation language and described in a practical way that is
directly implementable by model engineers. This paper presents a catalog
of 15 model transformation design patterns. We also demonstrate how it
is possible to automatically generate excerpts of a model transformation in
various languages given a design pattern. We conducted an initial survey
to motivate the need for model transformation design patterns and a user
study to validate the methodology we propose to solve problems as model
transformations based on design patterns.

Email addresses: hergin@crimson.ua.edu (Huseyin Ergin),
syriani@iro.umontreal.ca (Eugene Syriani), gray@cs.ua.edu (Jeff Gray)

Preprint submitted to Computer Languages, Systems and Structures June 8, 2016

Keywords: design patterns, model transformation, model-driven
engineering, development process, DelTa

1. Introduction

Model-driven engineering (MDE) is considered a well-established software
development approach that uses abstraction to bridge the gap between the
problem space and the software implementation [1]. MDE uses models to
describe complex systems at multiple levels of abstraction. In this paradigm,
models are first-class elements that represent abstractions of a real system,
capturing some of its essential properties. Models are instances of modeling
languages which define their abstract syntax (e.g., using a metamodel ex-
pressed in a class diagram), concrete syntax (e.g., graphical or textual), and
semantics (e.g., operational or denotational by means of a model transfor-
mation) [2].

MDE developers use model transformations for various activities, such
as evolving, refactoring, simulating, and manipulating models [3]. These are
supported by a plethora of model transformation languages (MTLs) [4], such
as GrGen.NET [5], Henshin [6], and MoTif [7], just to name a few. Although
model transformations are expressed at a level of abstraction closer to the
problem domain than code, the development of a model transformation for a
specific problem is still a hard, tedious and error-prone task [8]. As witnessed
in [9], one reason for these difficulties is the lack of a development process
where the transformation must first be designed and then implemented, as
practiced in software engineering.

One of the most revolutionary contributions to software design was the
Gang of Four (GoF) catalog of object-oriented design patterns [10]: both
in designing the software before implementation and automatically gener-
ating code from the design. Similarly, we believe that the design of model
transformations can benefit from model transformation design patterns. De-
sign patterns are meant to “name, abstract, and identify the key aspects of
a common design structure that make it useful for creating a reusable [. . .]
design” [10]. This definition has been adapted for graph transformation [11]
and, more recently, generalized for model transformation [12]. Design pat-
terns are used in a multitude of software engineering areas, such as in paral-
lel programming [13], finite-state verification [14], but also in other aspects
of MDE, namely for domain-specific languages (DSLs) [15] and metamod-
els [16]. A good use of design patterns yields to a better design, however,

2

anti-patterns, which represent bad patterns to apply, also play an important
role to prevent common mistakes [17]. Design patterns are also used to com-
municate about the design, which facilitates design planning, discussion, and
documentation [18], given they provide a common vocabulary for design [19].

Several design patterns studies have been proposed for model transfor-
mation [11, 12, 20, 21]. However, the literature shows no consensus on how
to represent these design patterns, especially not in a form independent from
existing MTLs, which hampers their reuse and adoption. This also limits
the potential to automatically generate concrete model transformation so-
lutions from design patterns, because each design pattern is represented in
different languages instead of a unified language. GoF design patterns are
described using various UML diagrams in order to make the design pattern
structure more readable and understandable, which also greatly helps the
automatic generation of the software code [22]. As stated in [23], a design
pattern language must be independent from any MTL in which patterns
are implemented. Furthermore, a pattern language must be fit to define
patterns rather than transformations. A design pattern language must also
be understandable and implementable by a transformation model engineer1.
Additionally, a pattern language must allow one to verify if a transformation
correctly implements a pattern. Design pattern catalogs evolve over time
and new patterns keep on being discovered due to the evolving nature of
software and reuse habits of model engineers [24, 25, 26]. Therefore, the de-
sign pattern language must not only support the expression of known design
patterns, but also be open to define new ones. A first attempt to create a
model transformation design pattern language can be found in [27]. More
recently, Lano et al. [12] published a broader study about the topic.

In this paper, we explore existing studies in model transformation design
patterns and identify 14 unique “real” design patterns in the literature. The
first contribution is a new unified formalism to describe model transformation
design patterns that consists of a template to describe and discuss a pattern
along with a modeling language to represent the structure of its solution.
The second contribution is the conduction of a survey across the community
of model transformation engineers to identify the needs for design patterns
and a dedicated unified language to express them. This paper can be consid-

1Through the paper, we use “model engineer” in place of “user” or “developer” of a
model transformation.

3

ered a response to the demands of the model transformation community in
matters of design patterns. The third contribution is a process, aided with
a tool we implemented, to guide model transformation engineers in their
design by automatically instantiating patterns in the MTL of their choice,
using template-based code generation. Finally, we define an additional design
pattern as the 15th, “execution by translation.”

The rest of the paper is organized as follows. In Section 2, we present
the results of the pilot survey, where we motivate the need for a language
to express model transformation design patterns. In Section 3, we explain
the terminology to distinguish between different reuse structures and discuss
existing work, the different notations used to express model transformation
design patterns, along with the classification of the patterns in the literature.
In Section 4, we present the unified template to describe model transforma-
tion design patterns and, in particular, the modeling language DelTa to define
the structure of the patterns. In Section 5, we demonstrate how all existing
model transformation design patterns, as well as new ones, use the unified
template. In Section 6, we propose a development process of model trans-
formations driven by design patterns. We also discuss the implementation of
the model transformation generator. In Section 7, we validate the method-
ology along with the tool and the language with a user study. Finally, we
conclude in Section 8.

2. Pilot Motivation Survey

In order to determine whether a design pattern language for model trans-
formation is useful, we conducted a survey. The research questions identified
are:

RQ1 Is there a need for a common language to describe model transforma-
tion design patterns?

RQ2 Is DelTa an appropriate candidate to describe model transformation
design patterns?

RQ3 How can a model transformation design pattern improve the imple-
mentation of model transformations?

4

2.1. Data Collection

We have prepared an online survey2 with a total of 22 questions. We
have also supported some of the questions by asking the reason behind the
answer. The survey was closed to selected participants only. We have used
the Qualtrics3 software to analyze the results.

2.2. Experimental Setup

There was no time limit to complete the survey and participants had
access to any resource they needed. The survey consists of four blocks of
questions or explanations. The first block has 10 questions and focuses on
background information about the participants, such as familiarity with de-
sign patterns, software design, and model transformation. The second block
has no questions but introduces DelTa and its purpose in a paragraph along
with referring the participant to another document that shows DelTa con-
crete syntax in details. In the third block, we test the ability of participants
to understand and interpret two design patterns in which the structure is
represented in DelTa: a simple one (entities before relations) and a more
complex one (fixed point iteration) from [27]. Here, the level of complexity
is relative to the number of constructs used in the design pattern. We asked
4 questions for each of the design patterns. The final block has 4 questions
and collects their opinion regarding the three research questions.

2.3. Participants

We selected participants from attendees at conferences and workshops
where model transformation is a main topic of interest (e.g., International
Conference on Model Transformation, Transformation Tool Contest). Ad-
ditionally, the participants must have developed at least one model trans-
formation in the past. A total of 23 participants ended up completing the
survey. According to the background question results, 95% of the partici-
pants develop software for academic purposes and an average of 27% of their
development time focuses on the design phase. 44% of the participants use
hand sketches for designing and 26% use a UML tool for software develop-
ment. All participants were familiar with object-oriented design patterns.
On average, 39% of their development time included model transformations.

2http://tinyurl.com/DelTaSurvey2015
3www.qualtrics.com/

5

http://tinyurl.com/DelTaSurvey2015
www.qualtrics.com/

Language Used by

ATL [28] 36%
ETL [29] 23%
Henshin [6] 9%
MoTif [7] 9%
QVT-OM [30] 9%

Table 1: The five most used model transformation languages (multiple choice)

Design Activity Performed by

Hand sketching 64%
Directly implement without designing first 18%
Think of solution in mind 14%
Use image editing tools 14%
Tool used has support for design 9%

Table 2: Design activities performed while planning and solving a model transformation
problem (multiple choice)

2.4. Results of Transformation Survey

Table 1 shows the most popular model transformation languages among
the participants. They could choose multiple selections from 11 languages
we proposed and another field where they can enter the name of an MTL
not listed. Table 2 lists the design activities performed by the participants
while planning and solving a model transformation problem. Activities in-
cluded a range of options from hand sketches to the tool’s built-in support
for design. Some languages (e.g., MoTif, GrGen.NET) have dedicated IDEs
that let the model engineers design immediately. Table 3 depicts the par-
ticipants’ understanding of the design pattern and how to implement it in
their language. Finally, 82% of the participants agree that it is appropriate
to design the solution using a specific notation first, before implementing the
transformation and 68% agree that it is useful to have a language dedicated
to designing model transformations, analogously to UML for object-oriented
programs. The complete results of this survey are available online4.

4http://tinyurl.com/DelTaSurveyResults

6

http://tinyurl.com/DelTaSurveyResults

Comprehension Design Pattern 1 Design Pattern 2

Understand the design pattern 91% 86%
Can see how to implement it 68% 68%

Table 3: Comprehension of the design patterns

2.5. Discussion of Transformation Survey Results

RQ1: 64% of the model engineers resort to hand sketches when planning
the solution to a problem that will use a model transformation. The main
reason reported is due to the lack of tools to design model transformations.
A large majority (68%) agree that a language for this purpose, such as DelTa,
is needed.

RQ2: Although 12 out of 22 participants stated that DelTa is an appro-
priate design pattern language (7 participants were neutral about DelTa),
they have almost unanimously understood both patterns well. Furthermore,
59% stated that patterns described in DelTa are easily implementable in
their favorite model transformation language. We also directly asked about
the understandability and implementability of the design patterns with a 5-
scale, from strongly agree to strongly disagree. The results are in Table 3.
Nevertheless, we did not have empirical evidence of this when we conducted
the survey, but now Section 6 validates this statement. It is important to
note that the survey used the earlier version of DelTa presented in [31],
but in graphical concrete syntax. Following the comments gathered from
this survey, we incorporated several of the useful improvements suggested by
the participants, e.g., removal of transformation block, converting random to
choice. This led to the version of DelTa presented in Section 4.2. Three par-
ticipants stated they did not think DelTa is an appropriate language. Two
of them were suspicious about the benefits of introducing a new language,
given the already many existing MTLs. However, DelTa is not an MTL, but
a language for describing design patterns which abstracts concepts present
in existing MTLs. The other participant was worried that DelTa could not
express complex transformations. However, DelTa does not aim at defining
complete transformations, but at restraining how a transformation should be
implemented.

RQ3: Besides regular improvements of the transformation code (such as
readability, understandability, optimization), a model transformation design
pattern helps the model engineers to change their current behavior. There is

7

still a large majority of model engineers doing hand sketches to design a model
transformation before implementation (64%). The model engineers tend to
use a tool if it exists. Also, they think DelTa is an appropriate language to
express model transformation design patterns. Therefore, a tool with a semi-
automatic generation from DelTa design patterns to model transformation
solutions in a MTL should definitely help. In addition, model engineers think
it may help to document the knowledge in the domain and understand the
complexity of the transformation before implementation.

2.6. Threats to Validity

There are various threats to the validity of this survey. Threats to in-
ternal validity include the need to understand DelTa before answering the
survey questions about design patterns. Although DelTa’s aim is to simplify
and increase the understandability of the design pattern structure, model en-
gineers are suggested to read the paper in which DelTa is introduced [27] and
a reference guide to understand graphical syntax of DelTa as depicted in Ap-
pendix B. We have tried to eliminate this threat by making the introduction
as clear as possible in the latter document.

Threats to external validity include the experience level of the model
engineers. All our model engineers are from an academic background. One
other threat is the number of participants and how far we can generalize
the results. We have asked questions about their experiences with model
transformations.

3. Existing Work on Model Transformation Design Patterns

In the following, after we define the terminology, we discuss initial works
on design patterns for model transformation and, in particular, a recently
published catalog [12]. We also classify the existing design patterns according
to our terminology.

3.1. Terminology

We note that not all model transformation design patterns proposed in
the literature should be considered as a design pattern; some are reusable id-
ioms, even refactoring patterns, and others are specific to a particular model
transformation language, which some can be generalized as a design pattern.
A design pattern should be language-independent and applicable in various
MTLs, whereas a reusable idiom is only applicable within the context of

8

a specific MTL. Additionally, a design pattern is a reusable solution that
should be applicable whether the transformation on which it will be applied
exists (e.g., to optimize the transformation) or not (e.g., to design the trans-
formation from the beginning). This leads to the difference between a design
pattern and a refactoring pattern, where the latter is only applicable when
there is an existing solution. We distinguish between the following concepts:

� Reusable Idioms are language-specific structures that are reusable
within a single MTL [11]. They are often presented as a feature built
into the MTL, e.g., multiple matching pattern in ATL [21].

� Design patterns are language-independent solutions to a class of
problems and are applicable to any MTL [10], e.g., mapping pattern [20].

� Refactoring patterns are language-independent structures that im-
prove an existing transformation according to some quality criteria [32],
e.g., introduce rule inheritance [12].

3.2. Reusable Idioms

Initial studies on model transformation design patterns proposed useful
idioms that are specific to model transformation languages: GReAT [11],
QVT-R [20], ATL [21], and VMTS [33]. Therefore, they should not be con-
sidered as design patterns for model transformation, but reusable idioms
in a specific MTL. Additionally, they are all defined as model transforma-
tions, rather than patterns, and use specific input and output metamodels.
Therefore, it is not clear how to reuse these patterns for different application
domains or in other languages.

The first work that proposed design patterns for model transformation
was by Agrawal et al. [11]. They defined the transitive closure pattern
to calculate transitive closure of the links in a graph structure. The leaf
collector pattern traverses a hierarchical tree to find and process all leaves.
The proxy generator idiom is not a general design pattern, since it is specific
to languages modeling distributed systems where remote interactions to the
system need to be abstracted and optimized. These patterns are defined in
the GReAT language.

Iacob et al. [20] defined five other design patterns for outplace transfor-
mations, where the input model is not modified during the transformation
and the output is a separate model. The mapping pattern first maps entities
and then relations. Because it is described using QVT-R, we consider it as

9

an implementation of the entity-relation mapping pattern described in [27].
The refinement pattern proposes to transform an edge into a node with two
edges in the context of a refinement transformation, so that the target model
contains more detail. The node abstraction pattern abstracts a specific type
of node from the target model while preserving its original relations. The
flattening pattern removes the composition hierarchy of a model by replac-
ing the containment relations. The duality pattern is not a general design
pattern, because it is specific to data flow modeling languages that convert
edges to nodes in the flow.

Bézivin et al. [21] mined ATL transformations and discovered two de-
sign patterns. The transformation parameters pattern suggests to model
explicitly auxiliary variables needed by the transformation in an additional
input metamodel, instead of hard-coding them in ATL helpers. The multiple
matching pattern shows how to match multiple elements in the from part
of an ATL rule. Newer versions of ATL already support this feature, which
makes this pattern obsolete.

Levendovszky et al. [33] proposed domain-specific design patterns for
model transformation as well as different DSLs. In their approach, they
defined design patterns using a specific MTL, VMTS, where rules support
metamodel-based pattern matching. They proposed two design patterns: the
helper constructs in rewriting rules pattern explicitly produces traceability
links, and the optimized transitive closure pattern which is similar to the one
from Agrawal et al. [11].

3.3. Design and Refactoring Patterns

Recently, Lano et al. [12] provided the most comprehensive model trans-
formation design pattern study. This study proposes a total of 29 patterns
classified in five categories.

Rule modularization patterns are meant to “improve the structural qual-
ity, flexibility, and maintainability of model transformations.” [12] These in-
clude the phased construction pattern to decompose a transformation into
phases. Optimization patterns are “concerned with improving the efficiency
of a transformation.” [12] These include the decomposing complex naviga-
tions pattern to simplify expressions. Model-to-text patterns deal with code
or text generation from models. These include the model visitor pattern to
generate text in a systematic way. Expressiveness patterns aim to overcome
MTL restrictions by providing alternative solutions. These include the sim-
ulating universal quantification pattern to replace for-all conditions with a

10

double negation. Architectural patterns are “concerned with organizing sys-
tems of transformations in order to enhance the modularity, verifiability, and
efficiency of these systems.” [12] These include the phased model construction
pattern to construct the target model using separate input models.

The authors also explained relations between and combinations of these
patterns, and how to select patterns according to transformation intents.
Lano et al. used a subset of transformation intents such as refinement, ab-
straction, and migration. However, a complete list of model transformation
intents is also available [3].

They described each pattern with the following fields: summary, applica-
tion conditions, solution, benefits, disadvantages, applications and examples,
and related patterns. Each field is used to explain the pattern.

3.4. Classification of Existing Efforts

In Table 4, we classify existing pattern structures in model transforma-
tions according to the terminology we have provided in Section 3.1. Design
patterns marked with ‘*’ are classified as reusable idioms, but they can be
promoted to design patterns if more MTLs support the feature they depend
on.

Most patterns from the rule modularization category are considered de-
sign patterns according to the above definitions. Phased construction is a
general pattern that encompasses structure preservation, entity splitting, en-
tity merging and map objects before links. These patterns require the trans-
formation to be applied in phases. For example, in Map objects before links,
objects need to be mapped in the first phase and links in the second phase.
This is identical to the Entity Relationship Mapping pattern that we pub-
lished in [27]. Auxiliary metamodel is a pattern to support temporary el-
ements that do not belong to source or target metamodels. Construction
and cleanup again show some similarity to Phased construction, since the
construction phase is clearly separated from the cleanup phase. Parallel/se-
rial composition requires rules be independent from each other in terms of
reading and writing attributes. Rule inheritance is another feature that may
not be supported by many MTLs, but a useful structure when it comes to
eliminating redundancy in the rules.

Expressiveness patterns are useful when a language lacks support for a
specific feature. Simulating universal quantification provides a for-all sup-
port by using double-negations and simulating explicit rule scheduling for
languages that have implicit scheduling.

11

Study Design Pattern Refactoring Pattern Reusable
Idiom

Lano [12] Phased construction, Structure
preservation, Entity splitting, En-
tity merging, Map objects before
linksa, Parallel composition, Aux-
iliary metamodelb, Construction
and cleanup, Recursive descent,
Introduce rule inheritance, Unique
instantiation, Object indexing,
Model visitorc, Simulating uni-
versal quantification, Simulating
explicit rule scheduling, Replace
fixed point by bounded iteration*,
Implicit copy*, Replace abstract
syntax by concrete syntax*

Replace explicit calls by implicit
calls, Omit negative application
conditions, Decompose complex
navigations, Restrict input ranges,
Remove duplicated expression
evaluations

Bezivin
[21]

Transformation parametersb Multiple
matching

Levendovsky
[33]

Optimized transitive closured,
Helper constructs in rewriting
rules*

Agrawal
[11]

Transitive closured, Leaf collectorc Proxy
generator

Iacob [20] Mappinga, Node abstraction* Refinement, Flattening Duality

Ergin [27] Entity-relation Mappinga, Transi-
tive Closured, Visitorc, Fixed-point
iteration

Table 4: Classification of model transformation design patterns. Same patterns with
different names are annotated with same letters (e.g., Model visitor and Leaf collector).

Among optimization patterns, unique instantiation checks for an existing
element with the same properties before creation, and Object indexing helps
to refer to elements in different rules by using a key.

We have generalized the patterns recursive descent and model visitor to
the visitor pattern [27]. They work on hierarchical structures and require
processing of nodes in this structure.

Architectural patterns are generalizations of rule-level patterns to orga-
nize transformations. In Lano et al., the structure is provided using activity
diagrams. Although they are useful, they do not serve the purpose of repre-
senting design patterns to detect and instantiate them because they are too
general, which adds much complexity for achieving this task. Therefore, we
have excluded architectural patterns in this study from design patterns we
considered.

12

Replace fixed point by bounded iteration is a language-specific feature, for
example using FRules instead of SRules in MoTif [7]. FRule matches the
rule’s pre-condition at the beginning, therefore executing the rule for a fixed
number of times, whereas SRule matches the pre-condition in each iteration
and works as long as the rule is applicable on the model. Implicit copy and re-
placing abstract by concrete syntax are language-specific patterns. However,
they provide useful features to have in an MTL, thus can be generalized and
promoted to design patterns.

We identified five patterns from Lano et al.[12] that are in fact refactor-
ing patterns: Replace explicit calls by implicit calls, Omit negative applica-
tion conditions, Decompose complex navigations, Restrict input ranges, and
Remove duplicated expression evaluations. All of these patterns require a
transformation to exist (as stated in their application condition) in order to
optimize specific features of the transformation. In addition, some of the
patterns proposed by Lano et al. are anti-patterns (i.e., depicts how not to
do things), such as entity merging and entity splitting.

Bezivin [21]’s transformation parameters is a design pattern which we
generalize to “auxiliary metamodel.” Multiple matching is a feature of the
ATL transformation language, therefore it is a reusable idiom.

Optimized transitive closure by Levendovszky [33] is a design pattern that
can be identified in some other studies [11, 27] and also in this paper. Helper
constructs in rewriting rules is considered a design pattern, because creating
traceability links can be reused in various MTLs.

Agrawal et al.’s [11] leaf collector is a visitor design pattern and proxy
generator idiom is considered a reusable idiom because it is specific to dis-
tributed systems modeling languages.

We generalize Iacob et al.’s [20] mapping pattern in this paper to an
Entities before relations pattern. Node abstraction can be carried out to be a
design pattern because it proposes a generic solution to identify some specific
nodes. Refinement and flattening requires some input transformation and
optimizes the structure of the rules, therefore they are refactoring patterns.
Duality is a reusable idiom to convert edges to nodes in a data flow.

Finally, all patterns in Ergin et al. [27] are design patterns designed for
the sake of this study.

4. A Unified Template for Model Transformation Design Patterns

This section defines the template to use when describing a MTDP.

13

4.1. The Unified Template

According to the feedback gathered in the survey in Section 2, although
DelTa is a good candidate to describe a design pattern, it is not sufficient
alone. A more complete description similar to GoF [10] design patterns was
suggested. As shown in Section 3, there is no agreement on how to rep-
resent model transformation design patterns. Different studies have used
different fields to represent a design pattern, e.g., applicability, benefits, and
structure. Table 5 depicts the correspondences between existing proposals
for model transformation design pattern templates. In addition, there is no
common language that provides the structure of a model transformation de-
sign pattern, analogous to how UML is used in representing the structures of
object-oriented design patterns. Therefore, we propose to unify the existing
design pattern representation templates and improve them with the appro-
priate language (i.e., DelTa) to define the structure of each design pattern.
The middle columns in Table 5 show which fields are used in different studies
to represent design patterns, along with their equivalents with the template
used in GoF in the last column. After analyzing all different notations and
templates used in existing approaches, we propose to merge the respective
fields as a unified template shown in the first column. They are mostly in-
fluenced by Lano et al. [12] since it was the most complete and thorough
template in the literature. In the unified template, a design pattern consists
of the following fields:

� Summary: a short description of the design pattern that usually gives
the outline of the other fields in a few sentences.

� Application Conditions: pre-conditions on the context of use of the
pattern. The conditions can be either pre-conditions on the metamodel
or constraints over the transformation. This is usually expressed in the
same language as the solution field.

� Solution: generic solution to the problem the design pattern addresses.
The structure of the solution is expressed in DelTa.

� Benefits: advantages of applying the design pattern. The benefits
can either be measurements with respect to some quality criteria or
improvements on some features of the transformation.

� Disadvantages: pitfalls of applying the design patterns. The disad-
vantages can again be measurements with respect to some criteria.

14

� Examples: concrete application of the design pattern in a real con-
text. The example is implemented in a specific model transformation
language.

� Implementation: discussion providing guidelines and hints on how
to implement the design pattern in various transformation languages.

� Related patterns: correlation of the pattern with other patterns.
This relation may be specialization, generalization, sequence, grouping,
alternatives, or others.

� Variations: different versions of the pattern. This can either be with
small tweaks or other alternative representations of the pattern.

15

U
n

ifi
e
d

T
e
m

p
la

te
B

e
z
iv

in
[2

1
]

L
e
v
e
n

d
o
v
-

sk
y

[3
3
]

A
g
ra

w
a
l

[1
1
]

Ia
c
o
b

[2
0
]

L
a
n

o
[1

2
]

E
rg

in
[3

4
]

G
o
F

M
e
a
n

in
g

S
u

m
m

ar
y

M
ot

iv
at

io
n

M
ot

iv
at

io
n

M
ot

iv
at

io
n

G
oa

l
S

u
m

m
ar

y
M

ot
iv

at
io

n
In

te
n
t

M
ot

iv
at

io
n

M
ot

iv
at

io
n

A
p

p
li

ca
ti

on
C

on
d

it
io

n
A

p
p

li
ca

b
i-

li
ty

A
p

p
li

ca
b

i-
li

ty
A

p
p

li
ca

b
i-

li
ty

A
p

p
li

ca
-

ti
on

C
on

d
i-

ti
on

s

A
p

p
li

ca
b

i-
li

ty
A

p
p

li
ca

b
i-

li
ty

S
ol

u
ti

on
S

ol
u

ti
on

S
tr

u
ct

u
re

S
tr

u
ct

u
re

S
p

ec
ifi

ca
ti

on
S

ol
u

ti
on

S
tr

u
ct

u
re

S
tr

u
ct

u
re

P
ar

ti
ci

p
an

ts

B
en

efi
ts

C
on

se
q
u

en
-

ce
s

C
on

se
q
u

en
-

ce
s

B
en

efi
ts

B
en

efi
ts

C
on

se
q
u

en
-

ce
s

D
is

ad
va

n
-

ta
ge

s
L

im
it

at
io

n
s

D
is

ad
va

n
-

ta
ge

s

E
x
am

p
le

s
K

n
ow

n
U

se
s

K
n

ow
n

U
se

s
E

x
am

p
le

A
p

p
li

ca
-

ti
on

an
d

E
x
am

p
le

s

E
x
am

p
le

s
K

n
ow

n
U

se
s

S
am

p
le

C
o
d

e

Im
p

le
m

en
ta

-
ti

on
Im

p
le

m
en

ta
-

ti
on

Im
p

le
m

en
ta

-
ti

on
V

ar
ia

ti
on

s
V

ar
ia

ti
on

s
V

ar
ia

ti
on

s
V

ar
ia

ti
on

s

R
el

at
ed

P
at

te
rn

s
R

el
at

ed
P

at
te

rn
s

R
el

at
ed

P
at

te
rn

s

T
ab

le
5
:

C
o
m

p
a
ri

so
n

o
f

fi
el

d
s

fo
r

d
es

ig
n

p
a
tt

er
n

d
es

cr
ip

ti
o
n

16

4.2. Design Pattern Language for Model Transformations

Below, we define the language we have created , DelTa, to express the so-
lution field of the unified template. DelTa is a neutral language, independent
from any MTL. It is designed to define design patterns for model transforma-
tions, hence it is not a language to define model transformations. We could
have used an existing MTL as a notation for DelTa, however our need is a
notation that expresses how elements within a rule are related and how rules
are related with each other. In this respect, DelTa offers concepts borrowed
from most MTLs, abstracts away concepts specific to a particular MTL, and
adds concepts to more easily describe design patterns. This is analogous to
how Gamma et al. [10] used UML class, sequence and state diagrams to define
design patterns for object-oriented languages. In the following, we describe
the abstract syntax, concrete syntax, and informal semantics of DelTa. We
also compare DelTa with existing similar purpose languages.

4.2.1. Abstract Syntax

ModelTransformationDesignPattern

name : String

Transformation

UnitRelation

Pattern

Metamodel

Transformation

Unit

DesignPatternElement
Annotation

note : String

1..* 1..* 1..*

*

TransformationUnit

Rule

Action

Constraint

NegativeConstraint

PseudoUnit

name : String

START

END

result : boolean

Expression

Variable

exists : boolean

name : String

*

1

0..1

operatesOn
*

declarations
*

DesignPattern

Element

ForbiddenConstraint*

group : int

TransformationUnitRelation

TransformationUnit

1

condition

Decision

1

success

1

fail

Sequence

source

target

1 1

Choice

PatternMetamodel

Variable

Type

name : String

Trace Element

RelationEntity

1
source 1
target 1

*

Tag

name : String

negation : boolean

ConditionTag

ActionTag

Pro�le

name : String

description : String

1

1

*

1

source1

target1

2..*

isExhaustive : boolean

NoSched

2..*

Parallel

2..*

name : String

name : String

Figure 1: DelTa Metamodel

As depicted in Fig. 1, a model transformation design pattern (MTDP)
consists of three kinds of components: transformation units (TU), pattern
metamodel (PM) and transformation unit relations (TUR). This is consistent
with the structure of common MTLs [35]. In MTDP, rules represent a similar
concept to graph transformation rules [36]. A rule consists of a constraint,
an action, optional negative constraints, and forbidden constraints. The first

17

three correspond to the usual left-hand side (LHS), right-hand side (RHS)
and negative application conditions (NACs) in graph transformation, respec-
tively. A constraint is the precondition of the rule. A negative constraint
defines the pattern that shall not be present, and a forbidden constraint only
has a symbolic meaning that specifically says the elements shall not exist
in the concrete transformation. Elements belong to a specific negative con-
straint group when multiple negative constraints are needed. Other than
these two, a regular constraint, which can also be considered as a positive
constraint, defines the pattern that must be present in the model. The ac-
tion defines the changes to be performed on the constraint (e.g., creation,
deletion, or update).

PMs and variables form the participants collaborating in a design pattern.
There are two types for variables: an element from the pattern metamodel
or a trace. The PM is a label to distinguish between elements from differ-
ent metamodels, since a MTDP is independent from the source and target
metamodels used by the concrete model transformation. When implementing
a MTDP, the pattern metamodel should not be confused with the original
metamodel of the source and/or target models of a transformation, but ide-
ally be implemented by their ramified version [37]. Given the metamodel of
a modeling language, ramification produces two metamodels, one to be used
as the type model of the pre-condition pattern of a transformation rule and
another for the post-condition pattern. For example, the former is used to
perform queries on the input model of the transformation and the latter is
used to perform updates to produce the output model. Metamodel elements
are abstracted to entities and relations. All variables are strongly typed.
Tags are of two kinds: either a condition tag to be used in constraints or an
action tag to be used in actions. When implementing a MTDP, the use of
tags may require to extend the original or ramified metamodels with addi-
tional attributes. Traceability links are crucial in MTLs but, depending on
the language, they are either created implicitly or explicitly by a rule. In
DelTa, we opted for the latter, which is more general, in order to require the
model engineer to take into account traceability links in the implementation.

As surveyed in [35], different MTLs have different flavors of TUs. For
example, in MoTif, an ARule applies a rule once, an FRule applies a rule on
all matches found, and an SRule applies a rule recursively as long as there
are matches. Another example is in Henshin [6] where rules with multi-node
elements are applied on all matches found. Nevertheless, all MTLs offer at
least a TU to apply a rule once or recursively as long as possible, where we

18

adopt the latter with an isExhaustive attribute in the rule. All other flavors
of TUs can be expressed in TURs as demonstrated in [35].

As surveyed in [7, 4], in any MTL, rules are subject to a scheduling policy,
whether it is implicit or explicit. For example, AGG [38] uses layers, MoTif
and VMTS [39] use a control flow language, and GReAT defines causality
relations between rules. As shown in [40], it is sufficient to have mechanisms
for sequencing, branching, and looping in order to support any scheduling
offered by a MTL. This is covered by the five TURs of DelTa: Sequence,
Choice, Parallel, Decision, and NoSched that are explained in Section 4.2.3.
PseudoUnits mark the beginning and the end of the scheduling part of a
design pattern.

Finally, annotations can be placed on any design pattern element in order
to give more insight to the reader on the particular design pattern element.

4.2.2. Concrete Syntax

initiate checkFixedPoint

fail

success

fail

success

Fixed Point

Iteration(mm) mm

entity1
mark

mm

entity2
mark

mm

elementToDelete
marked

mm

�xedPoint
marked

Modify

mm

elementToModify
marked

!modi�ed -> modify

mm

elementToCreate

Create

mm

anElement
marked

Delete

mm

anElement

1

n0

n0

1 23

5 6

7

8

9

10

11

12

13

14

15

16

4

Figure 2: A Sample Pattern in DelTa Concrete Syntax

We highlight the DelTa graphical concrete syntax through an example
in Fig. 2. A textual concrete syntax is also available in Appendix A. The

19

figure depicts the structure of the solution of a sample pattern we have mod-
ified from Fixed-point iteration pattern to illustrate most of the elements.
Therefore, it is not a real design pattern.

1. A design pattern has a name and takes as parameter the metamodels
involved in the pattern. In this example, the fixed-point iteration
design pattern involves one metamodel designated by mm.

2. A design pattern consists of a collection of rules rendered as rectangular
blocks with their name appearing on the top left. This pattern has five
rules: initiate, checkFixedPoint, Modify, Delete, and Create. A
concrete transformation rule implementing this design pattern should
have at least these rules.

3. When a self loop symbol appears on the top left, the rule is set to be
exhaustive. This means that the concrete transformation rule imple-
menting it should be applied on all of its matches. This may require to
have more than one rule implementing this rule, for example to match
different metamodel types.

4. The dashed rectangle labeled “1” on the top left represents a choice
block. It states that at least one of the rules from this block should be
implemented in the concrete transformation.

5. We use a control flow notation to represent rule scheduling. The start
node (filled ball) indicates the initial rule of the design pattern.

6. Arrows between rule blocks indicate a predence order: the concrete
transformation rule implementing the initiate rule should be performed
before the one implementing the checkFixedPoint rule.

7. Rule ordering may depend on the outcome of a rule. In this case,
a decision node determines the next rule based on whether a rule is
successfully applied (matches are found) or not. For example, if a
concrete transformation rule implementing the checkFixedPoint rule
succeeds, the design pattern states that the transformation implement-
ing it should terminate successfully (on a successful end node). Other-
wise, the next rule to be applied should be one from the choice block.

8. The design pattern can also state that the concrete transformation
implementing it should terminate unsucessfully. For example, if none
of the concrete transformation rules implementing the rules within the
choice block are applicable, then the design pattern indicates that the
transformation is unsuccessful: in the design pattern, this means that
a fixed-point is not reached.

20

9. DelTa rules have the minimal constraints and actions on elements of
the metamodel that concrete transformation rules implementing them
should have. For example, in rule initiate, there is only one constraint
stating that there must be a relation from an entity (entity1) to an-
other entity (entity2). Both entities shall belong to the same meta-
model (mm). In DelTa, we only reason about entities and relations,
independent from specific metamodel types and relations. Entities are
represented using a UML class notation and their metamodel appears
on the top right.

10. Action tags, represented using UML attribute notation, indicate an ac-
tion to be performed, by the concrete transformation rule implementing
it, on the entity when stated in the imperative form. For example, en-
tity1 has the mark action tag, meaning that this entity must be have
been “marked” in some form at this step of the concrete transformation.

11. When stated as a past participle, it is a condition tag that the entity
must satisfy in the constraint of the rule. For example, fixedPoint has
the marked condition tag, meaning that this entity must have been
“marked” in a previous rule so that a fixed-point is reached.

12. The notation !modified → modify should be interpreted as if the
entity elementToModify was not yet modified, then it should be
modified after the application of rule Modify.

13. Color coding of entities and relations inside the rules indicate whether
they are part of the constraint or a type of action of the rule. White
elements form the minimal application pre-condition that a concrete
transformation rule implementing it should have. Gray elements are
the minimal elements to be created in the concrete transformation rule.
For example, the Create rule states that the concrete transformation
rule implementing it should look for an entity that is marked and create
a new entity elementToCreate and a relation to this entity.

14. Black elements are the minimal elements to be deleted in the con-
crete transformation rule. For example, the Delete rule states that
the concrete transformation rule implementing it should look for an
entity elementToDelete that is marked and is the target of a relation
from another entity. Then the rule should delete the entity element-
ToDelete and the relation.

15. Elements can also participate in the negative application condition
(NAC) of a DelTa rule. This is presented by labeling the element
with the letter n followed by a number. A NAC indicates the pattern

21

that should not be found by the concrete transformation rule imple-
menting it. For example, the Create rule states that the concrete
transformation rule implementing it should create the relation and the
entity elementToCreate only if elementToCreate is not already
connected to the marked entity anElement, because these two ele-
ments are annotated with n0.

16. Apart from entities and relations, traces are also types of elements
that can be used in DelTa rules. They are represented as dashed lines
between entities and/or relations. Just like other elements, they can
be created and deleted, or be part of the constraint of a rule.

The complete description of the graphical concrete syntax is also available
in Appendix B.

4.2.3. Informal Semantics

The semantics of MTDP rules is borrowed from graph transformation
rules [36], but adapted for patterns. Informally, a MTDP rule is applicable
if its constraint can be matched without any negative constraints. If it is ap-
plicable, then the action must be performed. Conceptually, we can represent
this by: constraint ∧ ¬neg1 ∧ ¬neg2 ∧ . . .→ action. Forbidden constraints
remove ambiguity in the pattern and are not in this representation because
they can be achieved either by ignoring them in the generation or adding
them as a constraint to the model transformation language. The presence of
a negated variable (i.e., with exists=false) in a constraint means that its
corresponding element shall not be found. Since constraints are conjunctive,
negated variables are also combined in a conjunctive way. Disjunctions can
be expressed with multiple negative constraints. Actions follow the exact
same semantics as the “modify” rules in GrGen.NET [5]. Variables present
in the action must be created or have their flags updated. A variable may
be assigned tags to pass elements between rules. Negated variables in an
action indicate the deletion of the corresponding element. Tags are used to
either update some elements or reuse some elements in other rules. This is
similar to pivot passing in MoTif [7] and GReAT [41], and parameter passing
in Viatra [42]. A condition tag should be used as a verb in past tense form
and an action tag should be used in imperative form. In the case these forms
are the same, we distinguish between them by adding the word “did” at the
beginning of the condition tag, i.e., “set > didSet.”

MTDP rules are guidelines to the model engineer and are not meant
to be executed. On one hand, the constraint (together with negative and

22

forbidden constraints) of a rule should be interpreted as maximal : i.e., a
concrete model transformation rule shall find at most as many matches as
the MTDP rule it implements. On the other hand, the action of a rule should
be interpreted as minimal : i.e., a concrete model transformation rule shall
perform at least the modifications of the MTDP rule it implements. This
means that more elements in the LHS or additional NACs may be present in
the concrete model transformation rule and that it may perform more CRUD
operations. Furthermore, additional rules may be needed when implementing
a MTDP for a specific application. Note that the absence of an action in a
rule indicates that we do not care about the actions of the rule.

The scheduling of the TUs of a MTDP must always begin with START
and end with a number of ENDs. The Sequence has a source and a target
defines the temporal order between two or more TUs regardless of their ap-
plicability. The Choice is a group of rules that defines the non-deterministic
choice to apply one TU out of a set of TUs. The Parallel lets the rules inside
to be applied in parallel. The Decision defines a conditional branching and
applies the TUs in the success or fail branches according to the application of
the rule in the condition. Note that the Decision TUR can be used to define
loop structures. The last TUR is the NoSched, which means the scheduling
of the rules contained in this TUR is not important, such as within a layer
of rules in AGG.

The translation of DelTa models to concrete model transformations in
specific MTLs will give a more precise semantics by translation.

4.2.4. Comparison of DelTa with Existing Languages to Express Design Pat-
terns

Guerra et al. [9] proposed a collection of languages to engineer model
transformations and, in particular, for the design phase. They propose a
formal workflow that keeps traces between the different phases in the collec-
tion. Each phase involves the production of necessary models conforming to
the respective language. Rule diagrams (RD), which represent the language
that automatically produces the implementation of the transformation, are
used to describe the structures of the rules and their task in the low-level
implementation phase. Like DelTa, RD is defined at a level of abstrac-
tion that is independent from existing MTLs. Therefore, there are some
similarities and differences between RD and DelTa. In RD, rules focus on
mappings rather than constraints and actions in DelTa. The metamodel of
RD strictly specifies that the transformations are based on mapping models

23

received from the mapping phase of the collection. Therefore, there needs
to be at least two metamodels involved in the transformation to map with
each other. However, they specify designs for both unidirectional and bidi-
rectional rules. The scheduling of rules allows for sequencing and branching
in alternative paths based on a constraint, which is covered by DelTa. The
execution flow of RD supports sequencing rules, branching in alternative
paths based on a constraint which is similar to the decision TUR in DelTa,
or non-deterministically choosing to apply one rule which is similar to the
choice TUR. They also allow rules to explicitly invoke the application of
other rules. RD is inspired from QVT-R and ETL and is therefore more
easily implemented in these languages.

Lano et al. [12] proposed TSPEC as the language to describe the structure
of design patterns. The purpose of TSPEC is to formalize whole transforma-
tions, whereas the purpose of DelTa is to represent an abstraction of snippets
of a transformation, i.e., transformation patterns. Whereas TSPEC uses
mappings with constraints to represent rules in a transformation, DelTa pro-
vides a metamodel structure that lets create any kind of relation within the
rules, including element mappings from source language to target language.
TSPEC uses another metamodel, named language metamodel (LMM), to
represent the languages on which the transformations operate upon. This
is similar to the pattern metamodel part of DelTa for precisely specifying
constraints. In addition, DelTa has these features to help represent the de-
sign patterns: explicit decision structure to identify the result of a rule in
terms of success and failure, choice and no scheduled structures to group
rules together. DelTa provides both a graphical and textual concrete syn-
tax, whereas TSPEC only provides a textual syntax. In conclusion, we can
state that DelTa was designed intentionally from an engineering perspective,
to help engineers to understand and implement patterns, and to generate
transformations from it, whereas TSPEC formalizes the effects of a transfor-
mation and is used to analyze them.

5. Model Transformation Design Patterns

In this section, we apply the unified template to the identified model
transformation design patterns. We only show three design patterns for the
sake of readability and put the rest of them, including Lano’s design patterns,
in Appendix C. In the implementation field, where language-specific imple-
mentation details are provided, we illustrate each pattern with an example

24

implemented in an actual MTL. The goal here is to demonstrate applicability
of the unified template and represent the solution of the design patterns in
DelTa. Furthermore, we specify the category under which each pattern falls
according to the classification of Lano et al.

5.1. Entities Before Relations

This pattern falls under the “rule modularization” category.

� Summary: Entities before relations is one of the most commonly used
transformation patterns in exogenous transformations to encode a map-
ping between two languages. It creates the elements in a language cor-
responding to elements from another language and establishes trace-
ability links between the elements of source and target languages. This
pattern was originally proposed in [20].

� Application Conditions: The Entities before relations pattern is
applicable when we want to translate elements from one metamodel
into elements from another metamodel.

� Solution: The structure of the pattern is depicted in Fig. 3. The

src

sEnt
trgt

tEnt
n0

src

sEnt
trgt

tEnt

src

sEnt2
trgt

tEnt2

n0

Entities Before Relations

(src,trgt)

n0

entityMapping

relationMapping

Figure 3: Entities before relations - Structure in DelTa

structure reads as follows. In the first rule, for each instance of entities
in the source metamodel, if they do not have a corresponding target
entity, create the corresponding entity in the target metamodel. The
corresponding entity is represented by a trace connection between the
source and target entities. Then in the second rule, relations are cre-
ated between corresponding target entities, simulating their equivalent
relations in the source metamodel, again if the relation does not ex-
ist. This ensures that first, all entities from the source are mapped to
entities in the target and then, all relations between them are mapped.

25

� Benefits: With the help of traceability links, each element in the
target language has a corresponding element in the source language.
This improves debugging capabilities and error localization [28].

� Disadvantages: The pattern has no known disadvantages. However,
the traceability links should be removed after the transformation is
applied.

� Examples: A typical example of Entities before relations pattern is in
the transformation from class diagram to relational database diagrams,
where, for example, a class is transformed to a table, an attribute to
a column, and the relation between class and attribute to a relation
between table and column.

� Implementation:

Figure 4: Rules of Entities before relations pattern in ATL

The implementation of the Entities before relations pattern in ATL

26

is depicted in Fig. 4. It is applied to the class diagram to relational
database transformation example. There are two rules that correspond
to entityMapping: one for mapping classes to tables and one for map-
ping attributes to columns. The relationMapping is implemented as the
attrs2cols rule. In ATL, traceability links are either implicit and created
by the interpreter itself or modeled explicitly as a separate class con-
necting the source and target elements. We opted for the latter in this
implementation. Due to the causality relation between the rules, this
ATL transformation first applies rules class2table and attribute2column,
then attrs2cols as stipulate in this design pattern.

� Related patterns: The pattern can be identified as a special case of
Phased Construction in Section Appendix C.3, where the phases are,
first, the entities and, then, the relations.

� Variations: The mapping can be done in either many-to-one or one-
to-many with respect to the relation between source and target meta-
models.

5.2. Fixed-point Iteration

This pattern falls under the “optimization” category.

� Summary: Fixed point iteration is a pattern for representing a “do-
until” loop structure. It solves the problem by modifying the input
model iteratively until a condition is satisfied.

� Application Conditions: This pattern is applicable when the prob-
lem can be solved iteratively until a fixed point is reached. Each iter-
ation must perform the same modification on the model, possibly at
different locations: either adding new elements, removing elements, or
modifying attributes.

� Solution: The solution is depicted in Fig. 5. The pattern starts by
marking a predetermined group of entities in the initiate rule and checks
if the model has reached a fixed-point (i.e., the condition encoded in the
constraint of the checkFixedPoint rule). If it has, the checkFixedPoint
rule may perform some action, e.g., marking the elements that satisfied
the condition. Otherwise, the pattern modifies the current model by
choosing either create/modify/delete rules inside the Choice TUR. In

27

this rule, only one of the rules in the block are selected and the fixed
point is checked again for a possible finding. If the rules in the block
fail, it means no fixed-point is found and the result is a failure. The
deleted elements are depicted in black in the Delete rule.

initiate checkFixedPoint

fail

success

fail

success

Fixed Point

Iteration(mm) mm

element1
mark

mm

element2
mark

mm

elementToDelete
marked

mm

fixedPoint
marked

Modify

mm

elementToModify
marked
modify

mm

elementToCreate

Create

mm

anElement
marked

Delete

mm

anElement

1

Figure 5: Fixed-point Iteration - Structure in DelTa

� Benefits: The pattern helps to traverse the graph structure of the
input model. Therefore, it can be modified to fit into different graph
traversal algorithms.

� Disadvantages: The traversal of the graph occurs iteratively, which
hinders the parallelization opportunities of the model transformation.

� Examples: There are various applications of this pattern in different
fields. For example in [34], we showed how to solve three problems with
this pattern: computing the lowest-common ancestor of two nodes in a
directed tree, finding the equivalent resistance in an electrical circuit,
and finding the shortest path using Dijkstra’s algorithm are some of
them.

� Implementation: Fig. 6 shows the implementation of the LCA from [34]

28

LinkToAncestor

:GetLCA
?

C

A B

GetLCA

X

Y

X

YBB

X

Y

X

Y
A A

Rules: Scheduling:

LinkToSelf

,A A

B B

X X

LinkToParent

A A

X X

B B,

,

Figure 6: Rules and Scheduling in MoTif

in MoTif using the fixed point iteration pattern. The initiate rule is ex-
tended to create traceability links on the input nodes themselves with
the LinkToSelf rules and with their parents with the LinkToParent rules.
The GetLCA rule implements the checkFixedPoint rule and tries to find
the LCA of the two nodes in the resulting model following traceability
links. This rule does not have a RHS but it sets a pivot to the result for
further processing. The LinkToAncestor rules implement the iterate rule
by connecting the input nodes to their ancestors. The MoTif control
structure reflects exactly the same scheduling of the pattern.

� Related patterns: The iteration of the model with create/modi-
fy/delete elements can be done with the phased construction design
pattern. Also, auxiliary metamodel elements are used in order to trace
the elements.

� Variations: The pattern can be used to reduce the transformation by
using delete-only rules, or augment the transformation by using create-
only rules.

5.3. Execution by Translation

This pattern falls under the “optimization” category.

� Summary: To execute a domain-specific language (DSL), we often re-
fer to some other languages that have well-defined semantics and easy
to execute. This saves the time and effort of the model engineer to

29

write an executor from scratch for the DSL and standardizes the exe-
cution. With this pattern, the DSL is mapped to another intermediate
language. Then, this language is simulated and the corresponding DSL
elements are modified accordingly to show the animation.

� Application Conditions: The pattern is applicable when we want to
execute a DSL using another DSL that has well-defined semantics.

� Solution: The pattern refers to two metamodels; the dsl, which is

Execution by Translation

(dsl,simLang)

initialElement1
setup

initialize

terminatingCondition

simLang

initialElement2
setup

simLang element
simLang

success
fail

coreElement
changeState

simulate

simLang

animate

coreElement
stateChanged

simLang

originalElement
update

dsl

Figure 7: Execution by Translation - Structure in DelTa

the DSL we want to execute, and the simLang, which is the interme-
diate language we simulate instead of dsl. Each element in the dsl

is mapped to its corresponding equivalent in the simLang before the
application of this pattern, using the Entities before relations pattern.
In the initialize rule, we setup the initial state of the model ready
for the simulation. The simulation runs in a loop. First, we check a
terminatingCondition to know when to stop the execution. If it is
not satisfied, the simulate rule is activated. In this rule, the state of
specific elements needs to be modified according to a criterion in the
simulate rule. Then the animate rule finds the corresponding elements
of the elements whose state has been modified in the dsl and does the
necessary changes, which means either changing an attribute or the
concrete syntax of those elements. Then, the terminatingCondition is
checked again and the simulation goes on.

30

� Benefits: The main benefit is not needing a separate execution driver
for various DSLs. A well-known, well-analyzed executor can be reused
for different DSLs.

� Disadvantages: The elements of the DSL should be mapped to the
simulation language perfectly. Otherwise, there will be inconsistencies
in the execution.

� Examples: In [37], Kühne et al. execute finite state automata (FSA)
by translating to Petri Nets (PN). As they simulate the PN, they ani-
mate the FSA accordingly. In [43], we have defined a translation from
activity diagram (AD) to PN, and simulated the PN to animate the
AD. De Lara and Vangheluwe mapped a production system DSL to
a PN and used the PN for the dynamic behavior of the production
system [44].

� Implementation: An implementation in MoTif is depicted in Fig. 8.
The example maps PN to statecharts (SC) and uses the PN to simu-
late the SC. We only map the basic states and hyperedges in the SC
for simplicity, but the advanced transformation can be found in [45].
The mapping part maps the places to basic states and transitions to hy-
peredges with the placeToBasicState and the transitionToHyperedge

rules. Then, the arcs of the PN are mapped to links in the SC with the
arcsToLinks and the arcsToLinksT2P rules. After mapping, the init

part does the same job as in the previous examples. The setOneTokenTo-
Initial rule puts one token to the place of the initial node, which is the
place without an incoming transition in this case. Then, the highlight

rule highlights the current state. MoTif supports pivots to pass the
matched elements between rules. Therefore, this makes it easier to get
a transition and check if it is firing or not by just passing it to the
other rule, without the need for another attribute. A special complex
query rule in MoTif makes it possible to get the firing transition with
the help of the findTransition and the nonFiringTransition rules.
The findTransition gets one transition, assigns a pivot to it and the
nonFiringTransition checks if this transition is blocked or not. If the
pattern is matched, that means it is not a firing transition and the rule
tries another transition. The simulate and the animate part of the
rules are the same as the previous examples, as they are basic PN sim-
ulation rules. In the fullControlFlow structure, one can realize that it

31

mapping
placeToBasicState

1 1 2

Node(2).name=Node(1).name

transitionToHyperedge

1 1 2

Node(2).name=Node(1).name
arcsToLinks

1 2

3 4

1 2

3 43 4

arcsToLinksT2P

1 2

3 4

1 2

3 43 4

init
setOneTokenToInitial

1 1
Node(1).token=1

1
2

terminatingCondition

highlightBasicState

1

2

Node(1).token>0

1

2

findTransition

1

t 1 2

nonFiringTransition (NEG)

t

3

Node(3).weight>Node(1).token

simulate

produceTokens

4
2

t

5

Node(4).token+=Node(5).weight

4
2

5

consumeTokens

1 2

t

3
1 2
3

Node(1).token-=Node(3).weight

animate
removeHighlight

1

2

Node(1).token==0

1

2

highlightBasicState

1

2

Node(1).token>0

1

2

arcsToLinksT2P *

placeToBasicState
F

transitionToHyperedge
F

arcsToLinks
*

setOneTokenToInitial

highlightBasicState

:findTransition
??

:nonFiringTransition

mapping
F

consumeTokens

produceTokens
F

F
removeHighlight

highlightBasicState
F

init

terminatingCondition

?

simulate

animate

fullControlFlow

Figure 8: Petri Nets to Statecharts in MoTif

looks similar to the structure of the “execution by translation” design
pattern. This is because we borrow the control flow of DelTa, which is
TURelation, from the primitives of MoTif scheduling structures.

� Related patterns: Before application of this pattern, the elements of
the dsl should be mapped to the elements of simLang. Therefore, this
pattern should be preceded by a mapping pattern.

� Variations: One variation is when the transformation simulates the
first language and animates the second language accordingly. This only
inverts the two metamodels in the four rules of this design pattern.

32

6. Design Pattern-driven Model Transformation Development

The survey in Section 2 showed there is no systematic development pro-
cess that model engineers follow when they want to solve a problem using
model transformation, even if some preliminary processes have been proposed
in the past [9, 46]. On the other hand, design patterns let model engineers
reuse high-quality designs that have been proven to solve specific recurring
problems by experienced practitioners. Therefore, there should be a way to
let model engineers take advantage of these patterns when designing a model
transformation. To remedy the ad-hoc design and implementation of model
transformations (which consists of the large majority of projects in our pilot
survey), we propose a design process to guide model engineers in their design
choices by reusing design patterns in their implementations. The prototype
we implemented showcases how this can be achieved by automatically in-
stantiating patterns in the MTL of their choice using template-based code
generation.

6.1. Process for designing and implementing model transformations

We describe the process model transformation engineers are encouraged
to follow when they want to use design patterns in their transformation.
Budinsky et al. [47] generated actual code from object-oriented design pat-
terns and let the model engineers adapt the code to the rest of their appli-
cation and further modify to add necessary application-specific details. We
have adapted their approach to model transformation design patterns.

6.1.1. Problem identification

The very first step is to analyze the problem at hand and make sure that
rule-based model transformation is the correct paradigm to solve the prob-
lem. The choice of the appropriate model transformation approach greatly
influences the accidental complexity of the solution and thus the efficiency
of the development [48]. A divide-and-conquer methodology has proven to
be often useful to solve problems using model transformation because of the
modularity of the rules and control structure this paradigm offers [49]. Larger
problems can be decomposed into simpler sub-problems, until a solution us-
ing a design pattern becomes apparent.

6.1.2. Pattern selection

For each transformation (sub-)problem, the model engineer selects a model
transformation design pattern that is best fit to solve it, as widely practiced

33

for object-oriented design pattern selection [50, 51]. This requires model
engineers to scan through the design pattern catalog. However, senior and
recurrent model engineers can only focus on the summary and application
condition fields. This is an important step, because correctly implementing
an inappropriate design pattern will certainly lead to a bad design [17]. One
should not assume there is a design pattern for every problem. However, if a
design pattern can solve the problem at hand, then it is highly recommended
to use it. If not, one possibility is to craft a solution in DelTa. The DelTa
model helps the model engineer focus on the design of the solution so that
they are not encumbered with the details of an implementation in a specific
MTL.

6.1.3. Adaptation to problem

Design patterns are described in a generic way to be independent from
the specific context of their application. Thus, the model engineer must
adapt the pattern to the problem at hand. This includes customizing the
participants of the pattern in the DelTa model: metamodels and elements
involved, or adapting the semantics of tags (e.g., the example in Section 5.1
uses class diagrams as source metamodel). The adaptation step can also
include investigating variants of the pattern, focusing on the variation fields
(e.g., the mapping in Section 5.3 uses many-to-one instead of one-to-one
mapping).

6.1.4. Implementation and refinement

At this point, the model engineer first implements as-is the customized
pattern from the previous step. The choice of the MTL may require more ef-
fort at this step (e.g., if the MTL does not support explicit control scheduling,
the model engineer also has to adopt the Simulating Explicit Rule Scheduling
design pattern from Appendix C.3.9 in their transformations). Nevertheless,
this step may be automated by generating a model transformation excerpt
that implements the pattern [52]. Then, being a generic solution to the
problem, the implemented design pattern needs to be further refined to the
specific problem. At the rule level, one can add more actions to perform
or expand the constraint of rules (e.g., the model engineer has to add more
constraints to provide the logic for selecting the starting entity in the Visitor
design pattern in Appendix C.1). Another refinement may be to add further
rules to deal with different types (following the top-down phased construc-
tion in Appendix C.3.2) or to modularize the pattern (following the entity

34

splitting in Appendix C.3.5 and entity merging in Appendix C.3.6). More
concrete examples can be found in [31].

6.1.5. Integration

The implemented pattern should be integrated carefully with the rest of
the model transformation. Further customizations or modification may be
required (e.g., the init and mapping phase of Petri Net to statecharts trans-
formation in Fig. 8). In addition, micro-architectures can also be constructed
by applying patterns in combination with each other [18].

6.1.6. Beyond the process

This process is iterative and incremental since it can be repeated as long
as sub-problems can be solved using design patterns. It can also be integrated
in the transition between the design and implementation phases of well-
known software development processes that must be followed in the project
(e.g., Unified Process [53] or Agile Method [54]). This process does not
assume there is necessarily a design pattern to solve the (sub-)problem at
hand.

6.2. Benefits of a Design Pattern-driven Methodology

The core object-oriented design patterns have already demonstrated mul-
tiple benefits [55]. These include: (1) encapsulating the techniques to solve
similar problems, (2) proposing a vocabulary that various domain experts
can understand, and (3) improving the ability to document software by ab-
stracting away the language details [55]. In the proposed design pattern
driven development approach, we try to preserve these benefits as much as
possible. We have observed that DelTa can assist in supporting the under-
standing of solution and documentation of modeling concerns. In the steps
of our methodology, a model engineer can traverse existing patterns to find
a solution to a specific problem by studying similar solutions. The auto-
matic generation possibility directly from DelTa aids the model engineer by
removing irrelevant implementation details and avoiding accidental complex-
ities [56]. However, these benefits also result in several challenges. Studying
the existing design patterns may also require additional effort, which adds
additional time to solve a model transformation problem. After design pat-
terns become more familiar by the domain experts, it is expected that this
issue becomes less challenging.

35

U
se

r
To

ol

Select design
pattern

Design pattern

Populate
parameters

Set
parameters

Parameters

Select model
transformation

language

Load
parameters

Load
template

Model transformation
language

Generate transformation

Transformation

yes

More design
patterns?

no

Figure 9: Activity diagram to generate a model transformation

6.3. Tool support to guide the model engineer

In order to alleviate the development process of model transformation for
model engineers, we have implemented a tool that automates many cumber-
some steps of the process described earlier when a design pattern is appro-
priate to solve the problem. The workflow of our transformation prototype
is outlined by the activity diagram in Fig. 9 and a screenshot is illustrated
in Fig. 10. The model engineer starts by selecting a design pattern; in this
case, they selected the Entities before relations pattern. Each design pattern
requires problem-specific parameters to be filled out by the model engineer
(e.g., the rightmost area in Fig. 10 shows parameters that need to be filled
for the problem). The model engineer then selects the target MTL; in this
case GrGen.NET. The generator loads the template corresponding to the se-
lected MTL, the DelTa model corresponding to the selected pattern, and the
parameters to finally synthesize the concrete model transformation excerpt.
The model engineer completes the transformation manually to solve his spe-
cific problem or can generate other excerpts of the transformation from other
design patterns.

We have implemented the prototype with a graphical user interface to
simplify the process. The window depicted in Fig. 10 helps the model engi-
neer to select a design pattern: upon choosing a pattern from the list at the
top left, the solution of the pattern in the DelTa graphical syntax appears
below it. The model engineer can also read the complete description of the
design pattern with all the fields by clicking on the Show Design Pattern

Details button. Then, the model engineer fills problem-specific details of
the design pattern, following Budinsky et al.’s [47] code generation method-
ology. These parameters are inspired from transML rule diagrams [9] to
bridge the gap between DelTa models and transformations in the specific

36

Figure 10: Design pattern generator tool

MTL: e.g., metamodel-specific type names. The editable parameter list is
generated automatically from each DelTa model.

6.3.1. Implementation using MDE practices

Following MDE practices, we have adopted the Eclipse Modeling Frame-
work (EMF) [57] to create a domain-specific modeling environment for DelTa.
With this modeling environment, we populated the catalog with design pat-
tern structures conforming to the DelTa metamodel of Fig. 1. This also
gives the opportunity to define new design patterns or simply start designing
a solution to a model transformation problem directly using DelTa. We im-
plemented the generation of model transformations using the template-based
model-to-text transformation tool Xpand5. This is therefore a higher-order
transformation [58]. In order to show the applicability of our approach, we
support two different MTLs: GrGen.NET and Henshin. We choose these
two languages because they are exogenous [4], which has different input and
output metamodels. The choice of these two languages also demonstrates
the breadth of applicability of DelTa in various MTLs.

5https://eclipse.org/modeling/m2t/?project=Xpand

37

https://eclipse.org/modeling/m2t/?project=Xpand

6.3.2. Generation of concrete model transformations

We opted for a template-based code generation approach, as commonly
practiced in MDE, to reduce the development effort for further design pat-
terns and MTL support [4]. Only one template per MTL needs to be imple-
mented, because a template depends only on the metamodel of DelTa. The
template can be used to generate any design pattern from the catalog, as
well as new ones expressed in DelTa. In our case, we implemented Xpand
templates such that the interpreter takes as input a DelTa model in EMF
and generates textual code that can be executed by a model transformation
tool. Listing 1 depicts the general algorithm of the template to follow. It
starts from the root node of the design pattern and traverses all elements
hierarchically. Although this is a generic pseudo-template, small variations
in the algorithm are necessary depending on the target transformation lan-
guage. For example, when generating GrGen.NET transformation code, the
template needs to create two files, one for the scheduling and another one
for the rules, as in lines 2 and 19. however, only a single file is needed to
generate the Henshin Ecore model. An additional step is required after each
rule expansion (i.e., after line 17), where corresponding rule elements are
mapped between the constraint and action to indicate that they refer to the
same element.

Listing 1: General algorithm of a template to generation transformation code

1 Expand ‘ Model Transformation Design Pattern ’
2 Create f i l e f o r r u l e s
3 Expand ‘ Pattern Metamodel ’
4 Expand ‘ Transformation Unit ’
5 Expand ‘ Rule ’
6 Expand ‘ Annotation ’
7 Expand ‘ Constra ints ’
8 Expand ‘ Var iable ’
9 Expand ‘ Annotation ’

10 Expand ‘ Trace ’
11 Expand ‘ Entity ’
12 Expand ‘ Relat ion ’
13 Expand ‘Tag ’
14 Expand ‘ Negat ive Constra ints ’
15 Expand ‘ Var iable ’ under negat ive part o f the r u l e
16 Expand ‘ Actions ’
17 Expand ‘ Var iable ’ under ac t i on part o f the r u l e
18 Expand ‘ Start ’
19 Create f i l e f o r s chedu l ing

38

20 Expand ‘ Sequence ’ f o r sequence a f t e r s t a r t
21 Expand ‘ Unit ’ f o r sequence a f t e r the next un i t
22 Expand ‘ Dec is ion ’
23 Expand ‘ NoSched ’
24 Expand ‘ Sequence ’ r e c u r s i v e l y f o r the next sequence
25 Expand ‘End ’

In the pseudo-code of Listing 1, the “Expand” keyword indicates to write the
necessary textual code that corresponds to the DelTa element mentioned.
For example, expanding a rule in line 5 means generating rule {. . .} for Gr-
Gen.NET and <units xsi:type=‘‘henshin:Rule’’> ... </units> for
Henshin.

The implementation of the templates is straightforward, because DelTa
is a domain-specific language whose elements often represent elements di-
rectly present in an MTL. Nevertheless, there were some challenges using
this technology:

� Different parameters are needed for different transformation problems.We
have solved this by creating extensions using XTend, which is an-
other language commonly used together with Xpand. We could then
parametrize our templates and set different parameters for each trans-
formation case (e.g., the names of the design pattern, rules, variables
while expanding) that the model engineer generates.

� Traversing the scheduling structure of the design pattern is not an
intuitive task in Xpand, which is optimized to replace some textual
equivalent version of each model element. However, in order to gen-
erate the scheduling part, we had to traverse the structure from the
“start” node till the “end” node. Therefore, we have adopted a recur-
sive approach. The scheduling part of the template starts whenever
the start node is encountered. Then, we process each TUR structure
as they are encountered until the end node is reached. However, when
a sequence is found, we recursively expand the template responsible
for TUR, as depicted on line 24.

� Assigning IDs to different elements of the model is another challenge
we encountered. Even if we could assign an ID to an element randomly
in Xpand, it is not possible to access it later on when we want to refer
to that same element. Therefore, we generate an ID for an element so
that it is possible to deterministically and uniquely assign and retrieve

39

its value based on the context of the element. For example, if an
element of type T has to appear in the right-hand side of a rule R

(i.e., post-condition of a graph transformation rule like in GrGen.NET
and Henshin), its ID will be of the form R RHS T. Whenever we want
to refer to that same element in the right-hand side, we can then easily
recreate and reuse this ID.

An example output of the this tool is depicted in Fig. C.21. In that
example, the transformation, that is using Visitor pattern, is automatically
generated and then refined for the “class depth level” problem. The generated
transformation model conforms to a specific MTL. We use the respective
language compilers to establish this conformance check. For GrGen.NET,
the verification consists of running the compiler with a command line. For
Henshin, it consists of opening the model with the Henshin model editor that
can only open valid models. We have successfully verified that all design
patterns are correctly generated and conform to their respective MTLs.

6.4. Application on a Real Example

In what follows, we illustrate how model transformation design patterns
are applied on the case study from the Transformation Tool Contest 2013 [59]:
transforming a Petri net (PN) model to a Statechart (SC) model. We ex-
tend our original solution in MoTif [45] to execute the SC model using the
underlying PN model. The solution is summarized in Section 5.3 under the
implementation field. We solve this transformation problem following the
process we proposed in Section 6.1.

6.4.1. Problem Identification

We choose to solve this case with a model transformation approach that
uses an explicit scheduling of graph transformation rules, such as MoTif [7].
After analyzing the structure of each PN and SC, we propose to decompose
the transformation into the following sub-problems:

1. Initialization: elements in each PN are mapped to elements in each
SC.

2. AND Reduction: AND states are created in each SC for a special
set of places in each PN.

3. OR Reduction: OR states are created in each SC for a special set of
transitions in each PN.

40

4. Control Flow: overall control flow that depicts the ordering of the
rules.

5. Simulation: execute each SC by simulating the corresponding PN.

6.4.2. Pattern Selection

We identify the most appropriate design pattern from the catalog for
each transformation sub-problem. In the initialization phase, elements are
mapped by using the Entities before relations pattern. Some of these
mappings can be performed in parallel using the Parallel Composition
pattern. In order to keep a tracing relation between SC and PN elements,
we use the Auxiliary Metamodel pattern to create trace links. SC is a hier-
archical structure, therefore, we use the Top-down Phased Construction
pattern to create AND and OR states in the reduction phases, i.e., create
the AND (OR) states first, then the sub-states within those. The reduction
will run for as long as the PN has a suitable scenario for reduction: this
recursion is performed using the Fixed-point Iteration pattern. Selecting
the correct part of the PN for reductions requires the reuse of objects previ-
ously matched or created in other rules. Thus, we use the Object Indexing
pattern. The overall simulation of the SC using the corresponding PN is
ensured using the Execution by Translation pattern.

6.4.3. Adaptation to Problem

For most of the previously identified design patterns, the source meta-
model is a PN and the target metamodel is a SC. In addition, all the names
in the patterns should be adapted to represent the appropriate PN and SC
structures. For the initialization phase, we need a one-to-many variant of
the Entities before relations pattern, because an element in a PN is mapped
to two elements in a SC. No variation is needed for the remaining design
patterns.

6.4.4. Implementation and Refinement

We have implemented the problem in MoTif. Below, we highlight how
each of the previously adapted design patterns are implemented in the solu-
tion. The complete final transformation is available in the report [45].

Entities Before Relations:. These rules map the elements of a PN to elements
in a SC while maintaining traceability links between the source and the
target. In Fig. 11, the elements of a PN that are “place,” “transition,” and

41

“arcs” are mapped to the elements of a SC that are “BasicOR,” “hyperedge,”
and “links.”

placeToBasicOR

1 1

transitionToHyperedge

1 12
2

arcsToLinks

1 2

3 4

1 2

3 43 4

arcsToLinksT2P

1 2

3 4

1 2

3 43 4

Figure 11: Mapping Phase Rules

Parallel Composition:. The mapping rules in Fig. 11 can be executed in par-
allel because they do not share any common elements; e.g., rules “placeTo-
BasicOR” and “transitionToHyperEdge” can be performed in parallel.

Auxiliary Metamodel:. The dashed links in Fig. 11 represents the trace links
that are part of a separate metamodel, i.e., auxiliary metamodel. As a func-
tionality of the MoTif language, trace links belong to neither the source nor
the target metamodels.

Top-down Phased Construction:. The OR states are created in the “place-
ToBasicOR” rule of Fig. 11. Following the hierarchy, the new elements are
sub-states of the OR state in the rule in Fig. 12.

putHyperedgeOfTtoORofQ

1 2

4

1 2

4

t
q

Figure 12: A Rule from OR Reduction Phase

42

Object Indexing:. In MoTif, we use pivots to index elements and refer to
them later on. One example is pivot ~t for the transition labeled as 2 in
Fig. 12. This pivot was set in a previous rule and is bound to it by reference
in this rule.

Fixed-point Iteration:. The control flow in Fig. 13 applies the Fixed-point
Iteration pattern twice. For both AND and OR reductions in the transfor-
mation, we continue to reduce the SC as long as there are more reduction
points. In this case, the fixed point condition to check is whether there are
no further possible reductions.

Initialization

Find OR

?

OR Reduction

Find AND

?

ANDReduction Finish

Figure 13: Overall Control Flow

Execution by Translation:. The overall transformation is an instance of the
Execution by Translation pattern. The more abstract the design pattern, the
more it requires manual refinement by the model engineer. The Execution
by Translation pattern is an example of this situation. The tool generates
the partial transformation of this pattern, mainly focusing on the control
flow of the rules containing simple patterns. Fig. 14 depicts the rules and
control flow of the simulation after the manual refinement. The terminating
condition of the pattern is the PN having a firing transition. The simulate
part of the pattern consumes and produces tokens. Finally, the animate part
highlights the elements that contain tokens.

7. Validation User Study

We conducted a user study to understand the validity of the design pat-
tern driven methodology we have introduced in Section 6. The research
questions identified are:

43

findFiringTransition:
?

consumeTokens:
F

produceTokens:
F

highlightBasicState:
F

removeHighlight:
F

findTransition

1

t 1 2

nonFiringTransition (NEG)

t
3

Node(3).weight>Node(1).token

consumeTokens

1 2

t

3
1 2
3

Node(1).token-=Node(3).weight

produceTokens

4
2

t

5

Node(4).token+=Node(5).weight

4
2
5

highlightBasicState

1

2
Node(1).token>0

1

2

removeHighlight

1

2
Node(1).token==0

1

2

1

F

Figure 14: Simulation

RQ1 Does the methodology have any impact on the model engineers who
are trying to solve a model transformation problem?

RQ2 Is the tool prototype given in Section 6.3 useful for model engineers?

7.1. Experimental Setup

The study consisted of solving a model transformation problem using
a specific MTL: GrGen.Net [5]. We prepared a remote Windows machine
that had all the necessary software installed on Amazon EC26. Participants
only had to connect to the machine and follow online directives we provided
to them in order to take the study. The directives were divided into the
following parts:

1. Follow a quick GrGen.NET tutorial teaching the language basics cov-
ering the necessary structures needed to solve the problem.

2. Read the description of the problem they needed to solve and start
thinking of a solution.

6http://aws.amazon.com/ec2/

44

http://aws.amazon.com/ec2/

3. Read the description of the design pattern driven methodology (see
Section 6.1).

4. Follow a tutorial on how to use the Design Pattern Generator tool (see
Section 6.3).

5. Solve the problem using the tool.

6. Complete a survey regarding their experience in the user study.

Participants had a two-hour time slots alloted to them with access to
resources we provided them at any time. The problem to solve was a simple
translation from C language structures connected with pointers to Java lan-
guage classes connected with inheritance links and associations. The problem
had two parts. The first part was the translation so that the resulting Java
model had classes with single inheritance only. The second part was the
computation of depth levels of each class in the inheritance hierarchy. The
depth level represents the number of classes between a class and its furthest
ancestor. We provided them with an initial project with simplified metamod-
els of C and Java, along with the tools necessary for training purposes. The
post-survey consisted of 5 questions. We asked a question about their ex-
perience with GrGen.NET. Then, we asked them whether the methodology
had any impact on their conceptual thinking for a solution to the problem.
The remaining questions asked the participants to rate various properties of
the methodology, the tool, and the DelTa language on a scale of 1 to 5 (as
“bad”, “poor”, “average”, “good”, and “excellent”).

7.2. Data Collection

We collected and analyzed the actual transformation solutions after each
participant complete his study. The post-survey is available online7. We
again used the Qualtrics software to analyze the results of the survey.

7.3. Participant Selection

We selected participants from people who have developed model trans-
formation in the past. Among the participants of the first pilot survey, two
joined this study. In total, 10 developers participated in this study. Only
one of them declared he had used GrGen.NET before, which gave us the
opportunity to analyze the effects of the methodology on participants who
never used this MTL before.

7http://tinyurl.com/UserStudy2016

45

http://tinyurl.com/UserStudy2016

7.4. Results of the user study

Had impact Result

Yes 7
No 3

Table 6: Effect of the methodology

Task Result

First (Translation) 90%
Second (Depth Level) 30%

Table 7: Task completion ratio

Question Rating Rated 4-5

About methodology
Did you understand it? 4.4 90%
Is it useful? 4.1 80%
Do you find it natural? 3.4 50%
Would you adopt it in the future? 3.7 70%
About DelTa
Understandability of design patterns 3.7 60%
Readability of design patterns 4.4 80%
Usefulness 4 70%
Appropriateness 4.4 90%
Completeness 3.6 60%
About the tool
Easiness to use 4.2 80%
Intuitiveness 4.1 80%
Usefulness 4.3 80%
Correctness 4.5 100%

Table 8: Ratings of the properties

7.4.1. RQ1: Impact of the methodology on model engineers

The setup was such that participants were first given the problem first,
and only then was the methodology and design patterns revealed with min-
imal training. When solving the problem, they had to choose the most ap-
propriate design patterns from the ones available in the tool. This setup was
to reduced the probability of bias with the methodology when asked about
it.

Table 6 shows that 7 out of 10 participants acknowledged that the method-
ology had a positive impact on how they approached the solution to the

46

problem. The methodology helped them implement a transformation from
scratch successfully in a language that was completely new to them. The
remaining three stated that they did not need the methodology to be able
to solve the problem. Nevertheless, after examining their transformation,
the solution was no different from those who claimed it did. In fact, they
followed the methodology even they claimed it did not influence them.

Table 8 summarizes how they rated various properties of the methodol-
ogy, the DelTa language, and the tool. We show the average ratings of each
question in the second column. We also show what percentage of the par-
ticipants rated a property with “excellent” or “good” in the third column.
Although most of them understood the methodology and found it useful, half
of the participants found the methodology natural. The same participants
who felt the methodology impacted their conceptual solution said they would
reuse it in the future.

Table 7 reports how many participants completed successfully each task.
90% of the participants were able to solve the first task using the automatic
generation capability of the tool, after examining the problem and the seeking
for the required pattern to be used. However, only 30% were able to complete
the second task. Although this task was a bit harder, all participants stated
that the limited time prevented them from completing it.

7.4.2. RQ2: Usefulness of the design pattern generator tool

The tool generates a partial transformation from a selected design pat-
tern. Besides the usefulness of code generation, such as focusing on the
overall structure instead of implementation details, the tool also provides a
comprehensive catalog to explore design patterns. Participants had to choose
the right design pattern, generate the partial GrGen.NET code and manually
refine the transformation to correctly solve the problem.

Table 8 shows that most participants found the tool to be very useful,
easy, and intuitive to use. Furthermore, all participants agreed that the
generated transformation is correct, which validates our own test results.
DelTa, as the language of pattern structure, was also well appreciated in
terms of readability and usefulness. Also, all participants agreed that DelTa
offers an appropriate representation and description of the structure of design
patterns. This concurs with the results of the former pilot survey in Section 2.
40% of the participants did not understand very well the patterns because
they did not click on the description button to read the complete specification
of the design patterns. The DelTa model by itself is only one part of the

47

design pattern definition, but they relied only on that. The same participants
also questioned the ability of DelTa to cover all possible design patterns
(completeness). One possible explanation is that the prototype they were
given only listed five design patterns from the catalog. We made this choice
to reduce the amount of reading for participants due to the time limit.

7.5. Threats to Validity

There are various threats to the validity of this empirical study. Threats
to internal validity include the longer training session at the beginning of
the study. We have tried to eliminate this threat by making the training
as simple as possible in the directives file. However, this was a trade-off to
impose a time limit of two hours. We feel that allowing more time to solve
the problem may have exhausted some participants who would have then
dropped out of the user study.

The same threats to external validity of the motivational survey applies
here as all our participants are from an academic background. Another
threat is about the number of participants and how far we can generalize the
results. In addition, we assumed all participants are familiar with object-
oriented design patterns and can easily continue with model transformation
design patterns. Some participants ended up not knowing about the object-
oriented design patterns. However, they still solved the tasks. We should also
note that this was the participants’ first exposure to the DelTa and model
transformation design patterns.

Finally, some participants did not follow the tutorials. Therefore, they
chose a harder way to understand each design pattern, which is by structure
only, instead of a full description.

8. Conclusion

We conclude the paper with a summary and a discussion on the limita-
tion of our approach. Finally, we discuss future outlooks on adopting model
transformation design patterns as well as ideas to extend the work we pre-
sented.

8.1. Summary

We surveyed model transformation engineers to understand the needs for
model transformation design patterns and the essential requirements for a
language to express them. After analyzing existing model transformation

48

design pattern studies, we noted no consensus on the meaning of a model
transformation design pattern and how to represent it. Therefore, we cre-
ated a unified template to express model transformation design patterns and
a language to support the solution of the pattern. DelTa fulfills the initial
requirements in that it is a language for describing patterns rather than trans-
formations, it is independent from any MTL yet directly implementable in
most MTLs, and it can be used to define all 14 existing design patterns as well
as new ones. A follow-up informal survey we conducted with the same par-
ticipants showed preliminary validation that DelTa is an appropriate DSL to
express model transformation design patterns, it is easily understandable by
model engineers, and can be used directly in their implementation processes.
We have also implemented a tool that allows generation of model transfor-
mation excerpts from patterns expressed in DelTa in a concrete MTL to help
and guide model engineers in their design and implementation. Finally, we
have validated the tool along with the DelTa language and the methodology
with a user study.

8.2. Limitations

Instead of DelTa, a formal specification language such as in [60] can also
be used, but at the price of the understandability and ease of implementabil-
ity. DelTa is not for architectural patterns, anti-patterns, or higher-order
transformation patterns because it focuses on micro-architectures. Never-
theless, the purpose of DelTa is not only for the definition of a pattern, but
also to assist the model engineer during the design of model transforma-
tions, through automation. Finally, there are different model transforma-
tion approaches: imperatively (Kermeta [61]), rule-based (MoTif [7]), rela-
tional (QVT-R [62]), using term rewriting (Stratego [63]), template-based
(Xpand [64]), or by-example [65]. We only focus on rule-based transforma-
tions.

8.3. Future Uses of DelTa

We foresee several uses of DelTa in the future. First, DelTa can be used
to document design patterns. Model engineers can refer to the catalog in
Section 5 and Appendix C to learn and understand model transformation
design patterns. As witnessed in both user studies, the syntax of DelTa is
intuitive to model engineers. Therefore, we are confident that DelTa will
facilitate the comprehension and adoption of design patterns in future model
transformation implementations.

49

Second, we showed in Section 6 that design patterns defined in DelTa
are directly implementable. Model transformations can be automatically
generated from DelTa models. Similar to how UML is often used by soft-
ware engineers to design and implement object-oriented programs, we foresee
DelTa being used by model engineers to design and implement model trans-
formations following the methodology we propose. The architecture of the
prototype we developed facilitates the generation of model transformations
in a variety of MTLs.

Third, DelTa can be used to verify whether a given model transforma-
tion correctly implements a design pattern. Detecting correct or ill-formed
instances of design patterns is very helpful to increase the quality of existing
implementations [66]. One possibility to achieve this with model transforma-
tions is to translate a concrete model transformation implementation into a
DelTa model that abstracts its essence. This model can be compared with in-
dividual design patterns in DelTa by filtering elements that are not required
in the design pattern and output an approximate correspondence between
the abstract DelTa model of the transformation and the design pattern.

8.4. Future Work

Our implementation proved to work well with model transformation lan-
guages based on graph transformation. It would be interesting to investigate
how automatic generation of instances of design patterns can be extended to
other model transformation approaches: exogenous model-to-model transfor-
mations, such as QVT-Operational Mappings and ATL, and bi-directional
transformations, such as QVT-Relations and Triple Graph Grammars. Fur-
thermore, most design patterns presented in the catalog are only applicable
to in-place transformations. However, since the majority of problems solved
by model transformations are exogenous [67], we need to further investi-
gate design patterns applicable these kinds of problems. Although the initial
study in Section 7 shows promising results, a more extensive community-wide
study is necessary to further understand the benefits and disadvantages of
the design pattern driven methodology. However, as we discovered in the
feedback of the study, it is important that participants of the study are al-
ready trained with design patterns for model transformations. Therefore,
it would be ideal to integrate the findings of this paper in advanced MDE
courses. Finally, as pointed out in Section 8.3, the verification of correct
implementations of a design pattern in a concrete model transformation still

50

remains. This would have tremendous benefits to model engineers by pro-
viding them with feedback on the quality of their transformation through
corrective suggestions.

References

[1] T. Stahl, M. Voelter, K. Czarnecki, Model-Driven Software Develop-
ment: Technology, Engineering, Management, John Wiley & Sons, 2006.

[2] D. Harel, B. Rumpe, Modeling Languages: Syntax, Semantics and All
That Stuff, Part I: The Basic Stuff, Tech. rep., Weizmann Institute Of
Science (2000).

[3] L. Lucio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. Selim,
E. Syriani, M. Wimmer, Model Transformation Intents and Their Prop-
erties, Journal on Software and Systems Modeling (2014) 1–38.

[4] K. Czarnecki, S. Helsen, Feature-Based Survey of Model Transformation
Approaches, IBM Systems Journal 45 (3) (2006) 621–645.

[5] R. Geiß, M. Kroll, GrGen.NET: A Fast, Expressive, and General Pur-
pose Graph Rewrite Tool, in: Applications of Graph Transformations
with Industrial Relevance, Vol. 5088 of LNCS, Kassel, Germany, 2008,
pp. 568–569.

[6] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer, Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transforma-
tions, in: Model Driven Engineering Languages and Systems, Vol. 6394
of LNCS, Oslo, Norway, 2010, pp. 121–135.

[7] E. Syriani, H. Vangheluwe, A Modular Timed Model Transformation
Language, Journal on Software and Systems Modeling 12 (2) (2011)
387–414.

[8] J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Empirical
Assessment of MDE in Industry, in: International Conference on Soft-
ware engineering, Honolulu, HI, 2011, pp. 471–480.

[9] E. Guerra, J. de Lara, D. Kolovos, R. Paige, O. dos Santos, Engineering
Model Transformations with transML, Journal on Software and Systems
Modeling 12 (3) (2011) 555–577.

51

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison Wesley Profes-
sional, 1994.

[11] A. Agrawal, Reusable Idioms and Patterns in Graph Transformation
Languages, in: International Workshop on Graph-Based Tools, Vol. 127
of Electronic Notes in Theoretical Computer Science, 2005, pp. 181–192.

[12] K. Lano, S. Kolahdouz Rahimi, Model-Transformation Design Patterns,
IEEE Transactions on Software Engineering 40 (12) (2014) 1224–1259.

[13] T. Mattson, B. Sanders, B. Massingill, Patterns for Parallel Program-
ming, Software Patterns Series, Pearson Education, 2004.

[14] M. Dwyer, G. Avrunin, J. Corbett, Patterns in Property Specifications
for Finite-state Verification, in: Proceedings of the International Con-
ference on Software Engineering, Los Angeles, CA, USA, 1999, pp. 411–
420.

[15] D. Spinellis, Notable Design Patterns for Domain-specific Languages,
Journal of Systems and Software 56 (1) (2001) 91 – 99.

[16] H. Cho, J. Gray, Design Patterns for Metamodels, in: SPLASH ’11 DSM
Workshop, Portland, OR, USA, 2011, pp. 25–32.

[17] W. Brown, R. Malveau, S. McCormick, T. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis, John Wi-
ley & Sons, 1998.

[18] K. Beck, R. Johnson, Patterns Generate Architectures, in: Object-
Oriented Programming, Vol. 821 of LNCS, Bologna, Italy, 1994, pp.
139–149.

[19] S. M. Yacoub, H. H. Ammar, Pattern-oriented Analysis and Design:
Composing Patterns to Design Software Systems, Addison-Wesley Pro-
fessional, 2004.

[20] M.-E. Iacob, M. W. A. Steen, L. Heerink, Reusable Model Transforma-
tion Patterns, in: Enterprise Distributed Object Computing Workshop,
IEEE Computer Society, Munich, Germany, 2008, pp. 1–10.

52

[21] J. Bézivin, F. Jouault, J. Paliès, Towards Model Transformation Design
Patterns, in: Proceedings of the First European Workshop on Model
Transformations, 2005.

[22] A. Le Guennec, G. Sunye, J.-M. Jezequel, Precise Modeling of Design
Patterns, in: UML 2000 - The Unified Modeling Language, Vol. 1939 of
LNCS, York, UK, 2000, pp. 482–496.

[23] E. Syriani, J. Gray, Challenges for Addressing Quality Factors in
Model Transformation, in: Software Testing, Verification and Valida-
tion, ICST’12, IEEE, 2012, pp. 929–937.

[24] Y. Aridor, D. B. Lange, Agent Design Patterns: Elements of Agent Ap-
plication Design, in: Proceedings of the Second International Conference
on Autonomous Agents, AGENTS ’98, ACM, 1998, pp. 108–115.

[25] A. Gangemi, V. Presutti, Ontology Design Patterns, in: Handbook on
Ontologies, International Handbooks on Information Systems, Springer,
2009, pp. 221–243.

[26] A. DeHon, J. Adams, M. deLorimier, N. Kapre, Y. Matsuda, H. Naeimi,
M. Vanier, M. Wrighton, Design Patterns for Reconfigurable Comput-
ing, in: 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM, 2004, pp. 13–23.

[27] H. Ergin, E. Syriani, Towards a Language for Graph-Based Model Trans-
formation Design Patterns, in: Theory and Practice of Model Transfor-
mations, Vol. 8568 of LNCS, Springer, 2014, pp. 91–105.

[28] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A Model Transfor-
mation Tool, Science of Computer Programming 72 (1-2) (2008) 31–39.

[29] D. Kolovos, R. Paige, F. Polack, The Epsilon Transformation Language,
in: International Conference on Model Transformations, Vol. 5063 of
LNCS, Zürich, Switzerland, 2008, pp. 46–60.

[30] I. Kurtev, State of the Art of QVT: A Model Transformation Language
Standard, in: Applications of Graph Transformations with Industrial
Relevance, Vol. 5088 of Lecture Notes in Computer Science, Kassel,
Germany, 2008, pp. 377–393.

53

[31] H. Ergin, E. Syriani, Implementations of Model Transformation Design
Patterns Expressed in DelTa, Tech report SERG-2014-01, University of
Alabama, Department of Computer Science (Feb 2014).

[32] T. Mens, P. Van Gorp, A Taxonomy of Model Transformation, Elec-
tronic Notes in Theoretical Computer Science 152 (2006) 125 – 142.

[33] T. Levendovszky, L. Lengyel, T. Mszros, Supporting Domain-specific
Model Patterns with Metamodeling, Journal on Software and Systems
Modeling 8 (4) (2009) 501–520.

[34] H. Ergin, E. Syriani, Identification and Application of a Model Trans-
formation Design Pattern, in: ACM Southeast Conference, ACMSE’13,
Savannah, GA, 2013.

[35] E. Syriani, J. Gray, H. Vangheluwe, Modeling a Model Transformation
Language, in: Domain Engineering: Product Lines, Conceptual Models,
and Languages, 2012, pp. 211–237.

[36] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic
Graph Transformation, Monographs in Theoretical Computer Science,
2006.

[37] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, M. Wimmer, Explicit
Transformation Modeling, in: MODELS 2009 - Models in Software En-
gineering Workshop, Vol. 6002 of LNCS, Denver, CO, USA, 2010, pp.
240–255.

[38] G. Taentzer, AGG: A Graph Transformation Environment for Modeling
and Validation of Software, in: Applications of Graph Transformations
with Industrial Relevance, Vol. 3062 of Lecture Notes in Computer Sci-
ence, Charlottesville, VA, USA, 2004, pp. 446–453.

[39] L. Lengyel, T. Levendovszky, G. Mezei, H. Charaf, Model Transfor-
mation with a Visual Control Flow Language, International Journal of
Computer Science 1 (1) (2006) 45–53.

[40] E. Syriani, H. Vangheluwe, De-/Re-constructing Model Transformation
Languages, European Association of Software Science and Technology
(2010) 29.

54

[41] A. Agrawal, G. Karsai, F. Shi, Graph Transformations on Domain-
specific Models, Journal on Software and Systems Modeling (2003).

[42] D. Varro, A. Balogh, The Model Transformation Language of the
{VIATRA2} Framework, Science of Computer Programming 68 (3)
(2007) 214 – 234.

[43] E. Syriani, H. Ergin, Operational Semantics of UML Activity Diagram:
An Application in Project Management, in: Requirements Engineering
Conference 2012 Workshops: Model-driven Requirements Engineering,
Chicago, IL, USA, 2012, pp. 1–8.

[44] J. de Lara, H. Vangheluwe, Automating the Transformation-based Anal-
ysis of Visual Languages, Formal Aspects of Computing 22 (3-4) (2010)
297–326.

[45] H. Ergin, E. Syriani, AToMPM Solution for the Petri Net to Statecharts
Case Study, in: Seventh Transformation Tool Contest, 2013.
URL http://hergin.students.cs.ua.edu/research/ttc2013.pdf

[46] A. Balogh, G. Bergmann, G. Csertan, L. Gonczy, A. Horvath, I. Majzik,
A. Pataricza, B. Polgar, I. Rath, D. Varro, G. Varro, Workflow-Driven
Tool Integration Using Model Transformations, in: Graph Transfor-
mations and Model-Driven Engineering, Vol. 5765 of Lecture Notes in
Computer Science, 2010, pp. 224–248.

[47] F. Budinsky, M. Finnie, J. Vlissides, P. Yu, Automatic Code Generation
from Design Patterns, IBM Systems Journal 35 (2) (1996) 151–171.

[48] A. Rensink, P. Van Gorp, Graph Transformation Tool Contest 2008,
International Journal on Software Tools for Technology Transfer 12 (3-
4) (2010) 171–181.

[49] E. Syriani, H. Vangheluwe, A Modular Timed Graph Transformation
Language for Simulation-based Design, Journal on Software and Systems
Modeling 12 (2) (2013) 387–414.

[50] B. Zamani, G. Butler, S. Kayhani, Tool Support for Pattern Selection
and Use, Electronic Notes in Theoretical Computer Science 233 (2009)
127–142.

55

http://hergin.students.cs.ua.edu/research/ttc2013.pdf
http://hergin.students.cs.ua.edu/research/ttc2013.pdf
http://hergin.students.cs.ua.edu/research/ttc2013.pdf

[51] S. M. H. Hasheminejad, S. Jalili, Design Patterns Selection: An Auto-
matic Two-phase Method, Journal on Software and Systems Modeling
85 (2) (2012) 408–424.

[52] H. Albin Amiot, P. Cointe, Y.-G. Guhneuc, N. Jussien, Instantiating
and Detecting Design Patterns: Putting Bits and Pieces Together, in:
Automated Software Engineering, ASE’01, Coronado Island, San Diego,
CA, 2001, pp. 166–173.

[53] G. Booch, I. Jacobson, J. Rumbaugh, The Unified Software Develop-
ment Process, Addison Wesley, 1999.

[54] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices, Prentice Hall PTR, 2003.

[55] E. Agerbo, A. Cornils, How to preserve the benefits of design patterns,
SIGPLAN Not. 33 (10) (1998) 134–143.

[56] F. P. Brooks, Jr., No Silver Bullet Essence and Accidents of Software
Engineering, Computer 20 (4) (1987) 10–19.

[57] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse
Modeling Framework, Pearson Education, 2008.

[58] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, J. Bézivin, On the Use
of Higher-Order Model Transformations, in: European Conference on
Model Driven Architecture: Foundations and Applications, Vol. 5562 of
Lecture Notes in Computer Science, Enschede, The Netherlands, 2009,
pp. 18–33.

[59] P. Van Gorp, L. M. Rose, The Petri-Nets to Statecharts Transforma-
tion Case, in: Sixth Transformation Tool Contest, Vol. 135, Budapest,
Hungary, 2013, pp. 16–31.

[60] K. Lano, S. Kolahdouz Rahimi, Constraint-based Specification of Model
Transformations, Journal of Systems and Software 86 (2) (2013) 412–
436.

[61] J.-R. Falleri, M. Huchard, C. Nebut, Towards a Traceability Framework
for Model Transformations in Kermeta, in: ECMDA-TW’06: European
Conference on Model-Driven Architecture Traceability Workshop, 2006,
pp. 31–40.

56

[62] Object Management Group, Meta Object Facility 2.0 Query/View/-
Transformation Specification (Jan 2011).

[63] E. Visser, Stratego: A Language for Program Transformation Based on
Rewriting Strategies System Description of Stratego 0.5, in: Rewriting
Techniques and Applications, Vol. 2051 of Lecture Notes in Computer
Science, Utrecht, The Netherlands, 2001, pp. 357–361.

[64] B. Klatt, Xpand: A Closer Look at the Model2text Transformation
Language, Language 10 (16).

[65] D. Varro, Model Transformation by Example, in: Model Driven Engi-
neering Languages and Systems, Vol. 4199 of Lecture Notes in Computer
Science, Genova, Italy, 2006, pp. 410–424.

[66] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. Halkidis, Design
Pattern Detection Using Similarity Scoring, Transactions on Software
Engineering 32 (11) (2006) 896–909.

[67] Edouard Batot, Houari Sahraoui, Eugene Syriani, Paul Molins, Wael
Sboui, Systematic Mapping Study of Model Transformations for Con-
crete Problems, in: Model-Driven Engineering and Software Develop-
ment, SciTePress, 2016, pp. 176–183.

Appendix A. DelTa Textual Concrete Syntax

We have designed an alternative textual concrete syntax for DelTa. List-
ing 2 shows the EBNF grammar implemented in Xtext.

Listing 2: EBNF Grammar of DelTa in XText

1 MTDP:

2 'mtdp' NAME

3 'metamodels:' NAME (',' NAME) * ANNOTATION?

4 ('rule' NAME '*' ? ANNOTATION?

5 Entity?

6 Relation?

7 Trace?

8 Constraint

9 NegativeConstraint*

10 ForbiddenConstraint*

11 Action) +

12 TURelation+ ;

13

57

14 Entity: 'Entity' ELEMENTNAME (',' ELEMENTNAME) * ;

15 Relation: 'Relation' NAME '(' ELEMENTNAME ',' ELEMENTNAME ')'

16 (',' NAME ' (' ELEMENTNAME ',' ELEMENTNAME ')') * ;

17 Trace: 'Trace' NAME '(' ELEMENTNAME (',' ELEMENTNAME) + ') '

18 (',' NAME ' (' ELEMENTNAME (',' ELEMENTNAME) + ') ') * ;

19 Constraint: 'constraint:' '~'? (ELEMENTNAME|NAME) (',' '~' ? (ELEMENTNAME|NAME)) *

20 ANNOTATION? ;

21 NegativeConstraint: 'negative constraint:'(ELEMENTNAME|NAME) (',' (ELEMENTNAME|NAME)) *

22 ANNOTATION? ;

23 ForbiddenConstraint: 'forbidden constraint:'(ELEMENTNAME|NAME) (',' (ELEMENTNAME|NAME)) *

24 ANNOTATION? ;

25 Action: ('action:' ('~' ? (ELEMENTNAME|NAME) (',''~' ? (ELEMENTNAME| NAME)) *))

26 ANNOTATION? ;

27 TURelation: (TURTYPE ('START' | (NAME (' ['NAME'=' ('true' | 'false') '] ') ?))

28 (',' ('END' | NAME) (' ['NAME'=' ('true' | 'false') '] ') ?) +)

29 | Decision;

30 Decision: NAME '?' DecisionBlock ':' DecisionBlock;

31 DecisionBlock: ('END' | NAME) (' [' ('END' | NAME) '=' ('true' | 'false') '] ') ?

32 (',' ('END' | NAME) (' [' ('END' | NAME) '=' ('true' | 'false') '] ') ?) * ;

33 terminal NAME: ('a'..'z' | 'A'..'Z') ('a'..'z' | 'A'..'Z' | '0'..'9') * ;

34 terminal ELEMENTNAME: NAME '.' NAME ('[' NAME '=' ('true' | 'false')

35 (',' NAME '=' ('true' | 'false')) * '] ') ? ;

36 terminal ANNOTATION: '#' (! '#') * '#' ;

37 terminal TURTYPE: ('Sequence' | 'Choice' | 'Parallel' | 'NoSched') ':' ;

Listing 3 shows the Entities before relations pattern explained in Section 5
in the textual concrete syntax.

Listing 3: Entities before relations MTDP

mtdp EntitiesBeforeRelations

metamodels: src , trgt

rule entityMapping*

Entity src.e, trgt.f

Trace t1(src.e, trgt.f)

constraint: src.e, ~trgt.f, ~t1

action: trgt.f, t1

rule relationMapping*

Entity src.e, src.f, trgt.g, trgt.h

Relation r1(src.e, src.f), r2(trgt.g, trgt.h)

Trace t1(src.e, trgt.g), t2(src.f, trgt.h)

constraint: src.e, src.f, trgt.g, trgt.h, r1, t1 , t2 , ~r2

action: r2

Sequence: START , entityMapping , relationMapping , END

Appendix B. DelTa Graphical Concrete Syntax

In this section, we present all the graphical concrete syntax of DelTa
exhaustively.

Appendix C. Model Transformation Design Patterns - Cont’d

In this section, we continue listing the design patterns in unified template.

58

Model Transformation Design Pattern with pattern metamodels

A Design Pattern (mm1, mm2, ...)

Annotation

Note....

....................

Figure B.15: Model Transformation Design Pattern and Annotation

rule1 rule2

Start End[success] End[fail] Rule Exhaustive Rule

Figure B.16: Transformation Units

Sequence Decision Choice Parallel NoSched

fail

success
1 Parallel

Figure B.17: Transformation Unit Relations

Entity of

'mm' metamodel

Entity[create] Entity[delete] Entity[forbidden]

mm

ent

mm

ent
mm

ent
mm

ent
x

mm

ent1
update

Entity[actionTag]

mm

ent1
updated

Entity[conditionTag]

mm

ent1
!updated

Entity[negConditionTag]

Entity[Neg]

mm

ent
n0

Figure B.18: Pattern Metamodel - Entity

59

Relation[Neg]Relation

n0

Relation[Create] Relation[Delete] Relation[Forbidden]

X

Trace[Neg]Trace

n0

Trace[Create] Trace[Delete] Trace[Forbidden]

X

Figure B.19: Pattern Metamodel - Relation and Trace

Appendix C.1. Visitor

This pattern falls under the “rule modularization” category.

� Summary: This pattern traverses all the nodes in a tree and processes
each entity individually [27].

� Application Conditions: The pattern can be applied to problems
that consist of (or can be mapped to) a tree structure where all the
nodes need to be processed individually.

� Solution: The structure of the pattern is depicted in Fig. C.20. The
pattern starts by marking an entity with an action tag in the markIni-
tEntity rule. Then, in the visitEntity rule, the marked entity is tagged
as processed, if it has not been processed yet. The markNextEntity
rule marks the immediate child of the last processed entities as marked
and returns back to the visitEntity rule. It accomplishes this with a
decision relation and fail/success branches. The condition and action
tags appear in the low compartment of the entity.

� Benefits: The pattern allows for the individual processing of nodes
in a specific order, rather than bulk modification operations of model
transformations. Note that a context can be provided when processing
an entity of the metamodel. The pattern also allows for different model
traversal strategies.

� Disadvantages: A loop helps to traverse the tree structure, therefore
the parallelization of the rules is more difficult.

60

startEnt is a

preset entity

failsuccess

markInitEntity

mm

startEnt
mark

mm

currentEnt
marked

!processed -> process

mm

currentEnt
processed

mm

nextEntity
!marked -> mark

Visitor(mm)

visitEntity markNextEntity

Figure C.20: Visitor - Structure in DelTa

� Examples: This pattern can be used to compute the depth level of
each class in a class inheritance hierarchy, which represents its distance
from the base class.

� Implementation: Fig. C.21 depicts an implementation of the visitor

Figure C.21: Visitor rules and scheduling in GrGen.NET

pattern in GrGen.NET. This MTL provides a textual syntax for both
rules and scheduling mechanisms. In a rule, the constraint is defined

61

by declaring the elements of the pattern and conditions on attributes
are checked with an if statement. Actions are written in a modify or
replace statement for new node creation and eval statements are used for
attribute manipulation. The markBaseClass rule selects a class with no
superclass as the initial element to visit. Because this class already has
a depth level of 0, we flag it as processed to prevent the visitSubclass rule
from increasing its depth. This is a clear example of the minimality of
a MTDP rule, where the implementation extends the rule according to
the application. The visitSubclass rule processes the marked elements.
Here, processing consists of increasing the depth of the subclass by one
more than the depth of the superclass. The markSubclass rule marks sub-
classes of already marked classes. The scheduling of these GrGen.NET
rules is depicted in the bottom of Fig. C.21. As stated in the design
pattern structure, markBaseClass is executed only once. visitSubclass and
markSubclass are sequenced with the ;> symbol. The ∗ indicates to ex-
ecute this sequence as long as markSubclass rule succeeds. At the end,
all classes should have their correct depth level set and all marked as
processed. Note that in this implementation, visitSubclass will not be
applied in the first iteration of the loop.

� Related patterns: The pattern is related to phased construction and
recursive descent patterns [12], when the structure resembles a tree.

� Variations: The context that is needed to process elements can change.
Also, visitEntity and markNextEntity rules can be NoSched rules with
one rule per type inside to parallelize them. Finally, the ordering of the
visit can be adapted to be depth-first, breadth-first, or custom order.

Appendix C.2. Transitive Closure

This pattern falls under the “rule modularization” category.

� Summary: Transitive closure is a pattern typically used for analyzing
reachability related problems with an in-place transformation. It was
proposed as a pattern in [11] and in [33]. It generates the intermediate
paths between nodes that are not necessarily directly connected via
traceability links.

� Application Conditions: The transitive closure pattern is applica-
ble when the metamodels in the domain have a structure that can be
considered as a directed tree.

62

� Solution: The solution is depicted in Fig. C.22. The pattern operates
on a single metamodel. First, the immediateRelation rule creates a trace
element between entities connected with a relation. It is applied re-
cursively to cover all relations. Then, the recursiveRelation rule creates
trace elements between the node indirectly connected. That is, if enti-
ties child and parent are connected with a trace, then child and ancestor

will also connected with a trace. It is also applied recursively to cover
all nodes exhaustively.

mm

child
mm

parent

mm

child
mm

parent

mm

ancestor

Transitive Closure(mm)

n0
n0

immediateRelation

recursiveRelation

Figure C.22: Transitive Closure - Structure in DelTa

� Benefits: Since all the trace elements are created from each element
to all its ancestors, queries relying on this information lookups are
optimal. The resulting model is still valid conforming to its metamodel
because trace links are created outside the scope of the metamodel.
There are no side-effects and both rules are parallelizable.

� Disadvantages: The application of the pattern creates many trace
elements for single elements which can create a memory overflow when
the model is too large. We need a rule for each type of relation, also
for each combination of entity types, but that can be leveraged if using
abstract types defined in the metamodel (i.e., super types can be used
instead of the subtypes).

� Examples: The transitive closure pattern can be used to find the
lowest common ancestor between two nodes in a directed tree, such as
finding all superclasses of a class in UML class diagram.

� Implementation: We have implemented the transitive closure in AGG.
Fig. C.23 depicts the corresponding rules. AGG rules consist of the
traditional LHS, RHS, and NACs. The LHS and NACs represent the
constraint of the MTDP rule and the RHS encodes the action. The

63

Figure C.23: Transitive Closure rules in AGG

immediateSuperclass rule creates a traceability link between a class and
its superclass. The NAC prevents this traceability link from being
created again. The recursiveSuperclass rule creates the remaining trace-
ability links between a class and higher level superclasses. AGG lets
the model engineer assign layer numbers to each rule and starts to ex-
ecute from layer zero until all layers are complete. Completion criteria
for a layer is executing all possible rules in that layer until none are
applicable anymore. Therefore, we set the layer of immediateSuperclass

to 0 and recursiveSuperclass to 1 as the design pattern structure stated
these rules to be applied in a sequence.

� Related patterns: Transitive closure and fixed-point iteration pat-
terns can be integrated together to reach a target state in the model
structure.

� Variations: Instead of traces, we can use existing relation types from
the metamodel if allowed. Different types of relations can be used to
provide a priority structure.

Appendix C.3. Lano et al.’s Model Transformation Design Patterns

In this section, we present the solutions of the existing design patterns by
Lano et al. [12] in DelTa concrete syntax. We only present the summary and
solution fields from the unified template, because the complete description
of the design pattern is already provided in the original paper.

64

Appendix C.3.1. Object Indexing

The behavior of this pattern is already used in previous patterns, because
it is a built-in feature of DelTa.

� Summary: “All objects of an entity are indexed by a primary key
value, to permit efficient lookup of objects by their key.” [12]

� Solution: The solution is depicted in Fig. C.24. In the “firstRule”, an
entity is marked by setting a flag and in the “secondRule,” the same
entity is used.

Object Indexing

(mm)

�rstRule

mm

anEntity
setFlag

secondRule

mm

anEntity
�agSet

Figure C.24: Object Indexing - Structure in DelTa

� Variation: Some MTLs provide internal mechanisms to support this
design pattern (e.g., pivot structure in MoTif [7], GReAT [41] and
VMTS [39]).

Appendix C.3.2. Top-down Phased Construction

� Summary: “This pattern decomposes a transformation into phases
or stages, based on the target model composition structure. These
phases can be carried out as separate subtransformations, composed
sequentially.” [12]

� Solution: The solution is depicted in Fig. C.25. In the “formerPhase”
rule, a container element “tContainer” of target metamodel is created
and in the “latterPhase,” its composite element “tComposite” is cre-
ated.

Appendix C.3.3. Parallel Composition

� Summary: This pattern separates the rules according to a distinguish-
able criteria in order to execute them in parallel, and elements of one
parallel rule should not be accessed by another parallel rule in order to
avoid conflicts.

65

src

sContainer
trgt

tContainer
n0

n0

Top-down

Phased Construction

(src, trgt)

formerPhase

src

sComposite

src

sContainer
trgt

tContainer

latterPhase

src

sComposite
trgt

tComposite
n0

n0

n0

Figure C.25: Top-down Phased Construction - Structure in DelTa

� Solution: The solution is depicted in Fig. C.26. The “parallel1” and
“parallel2” rules are to be executed in parallel and if “ent1” is updated
in the first parallel rule, then it should not exist in “parallel2” rule,
therefore it is marked with an “x” on top left in the latter rule. The
same situation is true for “ent2” in the “parallel2” rule.

Parallel Composition

(mm)

parallel1

mm

ent1
update

mm

ent2

parallel2

mm

ent1

mm

ent2
update

x

x

Parallel

Figure C.26: Parallel Composition - Structure in DelTa

Appendix C.3.4. Unique Instantiation

� Summary: This pattern makes sure the created elements in a rule
are unique and eliminates redundant creation of the same element by
reuse.

� Solution: The solution is depicted in Fig. C.27. If “someEnt” element
is created in a rule to be chosen from a group of rules, which are put
inside a “NoSched” TUR, then it should not be created in another rule,
which violates “someEnt”s being unique.

Appendix C.3.5. Entity Splitting

� Summary: This pattern separates the rules into pieces so that all
creations must be done in its own rule when different types of target
elements are created by the same source element.

66

Unique Instantiation

(mm)

create1

mm

someEnt
unique

create2

mm

someEnt
x

Figure C.27: Unique Instantiation - Structure in DelTa

� Solution: The solution is depicted in Fig. C.28. In the solution, “sEnt”
is creating two different target elements, “tEnt1” and “tEnt2.” There-
fore, they should be created in different rules grouped in a “NoSched”
TUR.

src

sEnt
trgt

tEnt1
n0

n0

Entity Splitting

(src, trgt)
aSplit

src

sEnt
trgt

tEnt2
n0

n0

anotherSplit

Figure C.28: Entity Splitting - Structure in DelTa

Appendix C.3.6. Entity Merging

� Summary: This pattern separates the rules if the same target element
is updated by different source elements. Each update by a different
source element should occur within its separate rule.

� Solution: The solution is depicted in Fig. C.29. In the solution, after
“tEnt” is created in the first rule, then it is updated by several differ-
ent elements in the second NoSched TUR. Each update coming from
different source elements should be in different rules.

Appendix C.3.7. Construction & Cleanup

� Summary: “This pattern structures a transformation by separating
rules which construct model elements from those which delete ele-

67

Entity Merging

(src, trgt)

src

sEnt1
trgt

tEnt
n0

n0

initialCreate

trgt

tEnt
update

src

sEnt2

aMerge

trgt

tEnt
update

src

sEnt3

anotherMerge

Figure C.29: Entity Merging - Structure in DelTa

ments.” [12]

� Solution: The solution is depicted in Fig. C.30. The first set of rules
only create the elements before the second set of rules, which only re-
move the elements. In the group, scheduling is not important. There-
fore, rules are put inside a “NoSched” TUR.

src

sEnt1
trgt

tEnt1
n0

n0
Construction & Cleanup

(src, trgt)

constructionRule1

src

sEnt2
trgt

tEnt2
n0

n0

constructionRule2

src

sEnt1
trgt

tEnt1

cleanupRule1

src

sEnt2
trgt

tEnt2

cleanupRule2

Figure C.30: Construction & Cleanup - Structure in DelTa

Appendix C.3.8. Auxiliary Metamodel

� Summary: This pattern proposes to create an auxiliary metamodel
for temporary elements used in the transformation that do not belong
to either source or target metamodels.

� Solution: The solution is depicted in Fig. C.31. If any of create,
update, delete operations will be applied to the target metamodel en-
tities, the same or similar operation should also be applied to their
corresponding auxiliary metamodel elements i.e., “aEnt1,” “aEnt2,”
and “aEnt3.” These auxiliary elements can be traced from either the
source element or the target element.

68

Auxiliary Metamodel

(src, aux, trgt)

src

sEnt1
trgt

tEnt1

create

aux

aEnt1

1

src

sEnt2

trgt

tEnt2

update

aux

aEnt2
update

src

sEnt3
trgt

tEnt3

delete

aux

aEnt3

Figure C.31: Auxiliary Metamodel - Structure in DelTa

Appendix C.3.9. Simulating Explicit Rule Scheduling

� Summary: This pattern suggests “use of additional application con-
ditions of rules to enforce relative orders of rule execution.” [12]

� Solution: The solution is depicted in Fig. C.32. In order to specify an
ordering between two rules in a MTL that does not have an explicit rule
scheduling structure, the pre-condition of the “secondRule” requires
that the post-condition of the “firstRule” is satisfied. The “firstRule”
satisfies a constraint that can either be setting a flag or changing a
property in a specific entity, that is chosen to control the simulation of
the explicit rule scheduling. Then, the “secondRule” checks the same
entity whether the same constraint is satisfied. This way we ensure that
the “firstRule” is executed before the “secondRule.” Other scenarios
can be designed easily, such as involving three rules or simulating a
decision.

Appendix C.3.10. Simulating Universal Quantification

� Summary: The pattern simulates an antedecent “forAll(x|P)” condi-
tion by a double negation “not(X|not(P)).”

� Solution: The solution is depicted in Fig. C.33. In the solution, we
intend to select some entities with a specific condition. However, graph
transformation is existential. Therefore, we rewrite our rule using this

69

Simulating Explicit

Rule Scheduling

(mm)

firstRule

mm

schedEnt
satisfyConstraint secondRule

mm

schedEnt
constraintSatisfied

Figure C.32: Simulating Explicit Rule Scheduling - Structure in DelTa

pattern. Finally, the “select” rule tries to select entities those do not
satisfy the condition and returns true if it can not find such a rule and
vice versa.

Simulating Universal

Quantification (mm)

select

mm

anEntity
!condition

fail

success

Figure C.33: Simulating Universal Quantification - Structure in DelTa

� Implementation: In the “terminatingCondition” rules of Fig. 6, we
show how this pattern is applied. In these rules, we want to select a
firing “transition,” which means finding a “transition” with all incom-
ing edges have token weights either equal to or less than tokens of their
corresponding “places.” We rewrite the rules using this pattern and
try to select a firing “transition,” if and only if that “transition” does
not have negative condition of a firing “transition,” which is having
less token weight in the incoming edge than tokens of its corresponding
“place.”

70

	Introduction
	Pilot Motivation Survey
	Data Collection
	Experimental Setup
	Participants
	Results of Transformation Survey
	Discussion of Transformation Survey Results
	Threats to Validity

	Existing Work on Model Transformation Design Patterns
	Terminology
	Reusable Idioms
	Design and Refactoring Patterns
	Classification of Existing Efforts

	A Unified Template for Model Transformation Design Patterns
	The Unified Template
	Design Pattern Language for Model Transformations

	Model Transformation Design Patterns
	Entities Before Relations
	Fixed-point Iteration
	Execution by Translation

	Design Pattern-driven Model Transformation Development
	Process for designing and implementing model transformations
	Benefits of a Design Pattern-driven Methodology
	Tool support to guide the model engineer
	Application on a Real Example

	Validation User Study
	Experimental Setup
	Data Collection
	Participant Selection
	Results of the user study
	Threats to Validity

	Conclusion
	Summary
	Limitations
	Future Uses of DelTa
	Future Work

	DelTa Textual Concrete Syntax
	DelTa Graphical Concrete Syntax
	Model Transformation Design Patterns - Cont'd
	Visitor
	Transitive Closure
	Lano et al.'s Model Transformation Design Patterns

