Angle preserving linear transformations

There are various ways to say "a linear transformation preserves angles." In this hand-out, we present two of them. We show that a linear transformation preserves angles if and only if it stretches the length of every vector by some fixed positive number λ , which, in turn, occurs if and only if the dot product gets stretched by λ^2 .

We first prove that the latter two conditions are equivalent.

Lemma. Let $L : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and λ a positive real number. Then the following two statements are equivalent:

- (i) $L(\mathbf{v}) \cdot L(\mathbf{w}) = \lambda^2 (\mathbf{v} \cdot \mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$;
- (ii) $||L(\mathbf{v})|| = \lambda ||\mathbf{v}||$ for all $\mathbf{v} \in \mathbb{R}^n$.

Proof. Suppose $L(\mathbf{v}) \cdot L(\mathbf{w}) = \lambda^2(\mathbf{v} \cdot \mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Then

$$||L(\mathbf{v})||^{2} = L(\mathbf{v}) \cdot L(\mathbf{v}) = \lambda^{2} \mathbf{v} \cdot \mathbf{v} = \lambda^{2} ||\mathbf{v}||^{2}$$

for all $\mathbf{v} \in \mathbb{R}^n$. Since $\lambda > 0$, this implies that $||L(\mathbf{v})|| = \lambda ||\mathbf{v}||$ for all $\mathbf{v} \in \mathbb{R}^n$. Conversely, if $||L(\mathbf{u})|| = \lambda ||\mathbf{u}||$ for all $\mathbf{u} \in \mathbb{R}^n$, then for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we have

$$\begin{aligned} \mathbf{v} \cdot \mathbf{w} &= \frac{1}{4} ||\mathbf{v} + \mathbf{w}||^2 - \frac{1}{4} ||\mathbf{v} - \mathbf{w}||^2 \\ &= \frac{1}{4} \frac{1}{\lambda^2} ||L(\mathbf{v} + \mathbf{w})||^2 - \frac{1}{4} \frac{1}{\lambda^2} ||L(\mathbf{v} - \mathbf{w})||^2 \\ &= \frac{1}{\lambda^2} \left(\frac{1}{4} ||L(\mathbf{v}) + L(\mathbf{w})||^2 - \frac{1}{4} ||L(\mathbf{v}) - L(\mathbf{w})||^2 \right) \\ &= \frac{1}{\lambda^2} L(\mathbf{v}) \cdot L(\mathbf{w}). \end{aligned}$$

Theorem. Suppose $L : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation.

Then the following two statements are equivalent:

- (i) There is a $\lambda > 0$ such that $L(\mathbf{v}) \cdot L(\mathbf{w}) = \lambda^2 (\mathbf{v} \cdot \mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$;
- (ii) L preserves angles between non-zero vectors.

Proof. Suppose that $L(\mathbf{v}) \cdot L(\mathbf{w}) = \lambda^2(\mathbf{v} \cdot \mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Let θ be the angle between two non-zero vectors \mathbf{v} and \mathbf{w} , and let $\tilde{\theta}$ be the angle between $L(\mathbf{v})$ and $L(\mathbf{w})$. Then, using above lemma,

$$\cos\tilde{\theta} = \frac{L(\mathbf{v}) \cdot L(\mathbf{w})}{||L(\mathbf{v})|| \, ||L(\mathbf{w})||} = \frac{\lambda^2(\mathbf{v} \cdot \mathbf{w})}{(\lambda ||\mathbf{v}||) \, (\lambda ||\mathbf{w}||)} = \frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}|| \, ||\mathbf{w}||} = \cos\theta.$$

So, the angles, being in the interval $[0, \pi]$, are equal.

Conversely, let us now assume that L preserves the angles between non-zero vectors. Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the standard basis for \mathbb{R}^n . Since angles are preserved, the vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), \dots, L(\mathbf{e}_n)$ are non-zero orthogonal vectors. Consider the matrix A with the following columns

$$A = \left[\frac{L(\mathbf{e}_1)}{||L(\mathbf{e}_1)||}, \frac{L(\mathbf{e}_2)}{||L(\mathbf{e}_2)||}, \cdots, \frac{L(\mathbf{e}_n)}{||L(\mathbf{e}_n)||}\right]$$

It has the property that $A^T A = I$. That is, A is an orthogonal matrix. In particular, $(A^T \mathbf{v}) \cdot (A^T \mathbf{w}) = \mathbf{v}^T A A^T \mathbf{w} = \mathbf{v}^T \mathbf{w} = \mathbf{v} \cdot \mathbf{w}$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. So that $||A^T \mathbf{v}|| = ||\mathbf{v}||$ for all $\mathbf{v} \in \mathbb{R}^n$. The same properties hold when A^T is replaced by A. Moreover,

$$A\mathbf{e}_i = \frac{L(\mathbf{e}_i)}{||L(\mathbf{e}_i)||}.$$

Consequently, $A^T L(\mathbf{e}_i) = c_i \mathbf{e}_i$ with $c_i = ||L(\mathbf{e}_i)|| > 0$. Therefore, for every $i \neq j$,

$$\frac{(c_i \mathbf{e}_i + c_j \mathbf{e}_j) \cdot c_j \mathbf{e}_j}{(c_i^2 + c_j^2)^{1/2} c_j} = \frac{(A^T L(\mathbf{e}_i + \mathbf{e}_j)) \cdot A^T L(\mathbf{e}_j)}{||A^T L(\mathbf{e}_i + \mathbf{e}_j)|| ||A^T L(\mathbf{e}_j)||} \\
= \frac{L(\mathbf{e}_i + \mathbf{e}_j) \cdot L(\mathbf{e}_j)}{||L(\mathbf{e}_i + \mathbf{e}_j)|| ||L(\mathbf{e}_j)||} \\
= \frac{(\mathbf{e}_i + \mathbf{e}_j) \cdot \mathbf{e}_j}{||\mathbf{e}_i + \mathbf{e}_j|| ||\mathbf{e}_j||} = \frac{1}{\sqrt{2}},$$
(*)

because L preserves angles. Working out the leftmost expression of (*), yields

$$2c_j^2 = c_i^2 + c_j^2.$$

Therefore, $c_i = c_j$ for all *i* and *j*. We put $\lambda = c_1 = c_2 = \cdots = c_n$. Then $L(\mathbf{e_i}) = \lambda A \mathbf{e}_i$ for all $i = 1, 2, \cdots, n$. Hence, by linearity of *L* and *A*, $L(\mathbf{v}) = \lambda A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^n$. So, $L(\mathbf{v}) \cdot L(\mathbf{w}) = (\lambda A \mathbf{v}) \cdot (\lambda A \mathbf{w}) = \lambda \mathbf{v} \cdot \mathbf{w}$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.