
Some Basic Topological Concepts

Topology is the study of those properties of objects that are preserved under careful
deformation. This note summarizes the basic topological terminology and concepts
needed to make this vague statement precise.

For the entire discussion, let X be a subset of some Euclidean space Rn. The standard
Euclidean distance function

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2,

for two points x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) of X, has the following

Properties: For all x, y, z ∈ X we have

(1) d(x, y) > 0;

(2) d(x, y) = 0 if and only if x = y;

(3) d(x, y) = d(y, x);

(4) d(x, y) 6 d(x, z) + d(z, y).

We call X together with the distance function d a metric space. In fact, one calls any
set X along with any real-valued function d(x, y), which satisfies above properties
(1)–(4), a metric space.

Given a point x ∈ X and a radius ε > 0 we call the set

NX(x, ε) = {y ∈ X | d(x, y) < ε}

a basic neighborhood of x in X. A subset N ⊆ X is simply called a neighborhood of x
in X if it contains some basic neighborhood of x. We call a subset U ⊆ X open in X
if U is a neighborhood for all of its own points; that is, if for every x ∈ U there is an
ε > 0 such that x ∈ NX(x, ε) ⊆ U . The collection of open sets of X has the following
important

Properties:

(1) Both the empty set ∅ and X itself are open in X;

(2) If U and V are open in X, then so is U ∩ V ;

(3) The union of any collection of open sets of X is open in X.
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We call X together with its collection of open sets a topological space, or simply a
space. (Note that the same set U might be open in one space X but not in another.)
Again, one calls any set X along with any collection of subsets (called the “open sets”
of X), which satisfy above properties (1)–(3), a topological space.

Spaces are the objects of study in topology.

We say that an infinite sequence (xk) in X converges to a point x ∈ X if any given
neighborhood U of x in X contains all but finitely many xk; that is, if for every ε > 0
there is an index K such that d(xk, x) < ε for all k > K. As usual, we will denote
this fact by

lim
k→∞

xk = x.

A subset C ⊆ X is called closed in X if sequences from C cannot converge to points
of X that are outside of C; that is, if given any sequence (xk) in C and any x ∈ X
with lim

k→∞
xk = x ∈ X, we can always conclude that x ∈ C. Note that a subset of

X need not be either, open or closed. Moreover, as it was the case for open sets,
the same set C might be closed in one space X but not in another. An important
relationship between the concepts of open and closed is the following

Property: Let U ⊆ X. Then U is open in X if and only if X \ U is closed in X.

Summary: We observe that the topology of X can be described using either one
of the following three methods: (1) the open sets of X; (2) the closed sets of X; or
(3) the convergent sequences of X. A property of a (metric) space X which is phrased
in terms of any one of these three concepts can therefore also be expressed by any of
the other two. A property of the space X which can be described in terms of open
sets is called a topological property of X.

In topology, the only properties of spaces that we study are topological properties.

Now consider a second subset Y ⊆ Rn. We call a function f : X → Y continuous at

x ∈ X, if for all sequences (xk) in X with lim
k→∞

xk = x , we have lim
k→∞

f(xk) = f(x). If

f is continuous at every point x of X, then we call f continuous. The two topological
spaces X and Y are called topologically equivalent (or homeomorphic) if there is a
bijective continuous function h : X → Y whose inverse function h−1 : Y → X is
also continuous. We call such an h a homeomorphism. If X and Y are topologically
equivalent, we will write X ≈ Y . Notice that under the correspondence of a homeo-
morphism all convergent sequences and their limits correspond. Consequently, if X
and Y are topologically equivalent, then the open sets of X and the open sets of Y
correspond. Therefore:

Topologically equivalent spaces share all topological properties.
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Caution: It is important to note that the concept of topological equivalence through
homeomorphism is an intrinsic one. It does not make any reference to the Euclidean
space Rn of which X and Y are subsets. In other words, two topologically equivalent
spaces are equivalent when viewed from within.

However, a homeomorphism is sometimes (but not always) the result of a gradual
deformation over time of the surrounding Euclidean space. This stronger notion is
captured in the following definition.

The two topological spaces X and Y are (ambient) isotopic in Rn if there is a con-
tinuous function H : Rn × [0, 1]→ Rn such that

(1) at every time t ∈ [0, 1], the function Ht : Rn → Rn defined by Ht(x) = H(x, t)
is a homeomorphism;

(2) H0(x) = x for all x ∈ Rn;

(3) H1(X) = Y .

This function H is called an isotopy.

Since an isotopy represents a homeomorphism between X and its image Ht(X) at
any given time t during the deformation, we remark the following:

If one space can be deformed into another by an isotopy, then the two spaces
are topologically equivalent and consequently share all topological properties.

However, X and Y might be topologically equivalent without being isotopic in Rn.
Moreover, the concept of isotopy depends on the choice of the ambient space Rn. For
example, two spaces X and Y that are subsets of the Euclidean plane might not be
isotopic as subsets of R2 but might be isotopic within R3.

Compactness and Connectedness

Two of the most important topological properties are compactness and connectedness,
to whose definition we come next.

We say that the space X is compact if from every sequence (xk) in X we can extract
a subsequence (x′k) which converges to some point x in X; that is, if sequences in
X cannot help but “crowd” some point of X. (Recall that a sequence (x′k) is called
a subsequence of a sequence (xk), if (x′k) is obtained from (xk) by possibly omitting
finitely or infinitely many members.)
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For subsets of Rn there is an alternative way of characterizing compactness:

Theorem. A subset of Rn is compact if and only if it is closed in Rn and bounded.

(X is bounded if there is a radius r > 0 such that all points of X lie within a distance
less than r from the origin.)

The space X is called disconnected if it can be written as X = A∪B with two disjoint
non-empty sets A and B such that no sequence of A converges to a point of B and
no sequence of B converges to a point of A. If X is not disconnected, then we call it
connected.

Connectedness is a somewhat subtle concept. However, it is often easy to verify that
a space is path connected. We say that X is path connected, if for every two points x
and y in X there is a continuous function p : [0, 1]→ X with p(0) = x and p(1) = y.
(We call p a path from x to y.)

Since the notions of compactness and connectedness are topological properties, they
are preserved under homeomorphism. Interestingly enough, an even stronger state-
ment is true:

Theorem. Suppose f : X → Y is a continuous onto function, but not necessarily a
homeomorphism.

(1) If X is compact, then so is f(X) = Y .

(2) If X is connected, then so is f(X) = Y .

(3) If X is path connected, then so is f(X) = Y .

In short: The continuous image of a compact [resp. connected, path connected] space
is compact [resp. connected, path connected].

We close by comparing the two concepts of connectedness:

Theorem.

(1) If the space X is path connected, then X is also connected.

(2) Conversely, suppose a space X is connected. Then X is path connected if and
only if every point x of X has some path connected neighborhood N in X.
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