
JD Otis
Completed Originals

#JD Otis Project 2 3/23/2023

def collage():
 #Locates the base picture & signature
 source = makePicture(getMediaPath("photo4_500x720.jpg"))
 #Locates the signature
 signature = makePicture(getMediaPath("JDSignature.png"))
 #Creates 5 canvases. A large main canvas, and 4 seperate canvases for
 #modification on their own accord
 canvas = makeEmptyPicture(1000, 720)
 quadrant1 = makeEmptyPicture(500,720)
 quadrant2 = makeEmptyPicture(500,720)
 quadrant3 = makeEmptyPicture(500,720)
 quadrant4 = makeEmptyPicture(500,720)
 #Pastes the base picture in the middle of the main canvas using the scale
 #function with a factor of 1, as to not change the size
 scale(source, canvas, 1, 251, 0)
 #Modifies quadrants individually within their own canvases
 #Quadrant one is flipped over the Y axis and grayscaled
 quadrant1 = yFlip(source)
 quadrant1 = grayscale(quadrant1)
 #Quadrant two is flipped over the X axis and mirrored and saturated
 quadrant2 = xFlip(source)
 quadrant2 = mirror(quadrant2)
 quadrant2 = saturate(quadrant2, 1.5)
 #Quadrant three has its quadrants shuffled clockwise and has its color inverted
 quadrant3 = scramble(source)
 quadrant3 = invert(quadrant3)
 #Quadrant four is flipped over both its X and Y axis and is saturated down
 quadrant4 = yFlip(source)
 quadrant4 = xFlip(quadrant4)
 quadrant4 = saturate(quadrant4, 0.5)
 #Scales quadrants down to half their size and pastes them onto canvas in the
 #empty space
 scale(quadrant1, canvas, 0.5, 0, 0)
 scale(quadrant2, canvas, 0.5, 750, 0)
 scale(quadrant3, canvas, 0.5, 0, 360)
 scale(quadrant4, canvas, 0.5, 750, 360)
 #Adds color to the fourth quadrant
 setExtremes(canvas, 754, 364, 1000, 720, red, orange, yellow)
 #Draws borders around each picture. Borders also set extremes to white, gray,
 #and black for added color
 drawBorders(canvas)
 #Adds signature
 addSignature(canvas, signature, 125, 0)
 #Shows final product
 explore(canvas)

def addSignature(picture, signature, x, y):
#Adds a signature to the given picture at the specified position.
 for i in range(getWidth(signature)):
 for j in range(getHeight(signature)):
 px = getPixel(signature, i, j)

 # Check if the pixel is non-white.
 if getRed(px) == 0:
 # Change corresponding pixel in the picture to a contrasting color.
 targetPixel = getPixel(picture, x+i, y+j)
 setRed(targetPixel, 255 - getRed(targetPixel))
 setGreen(targetPixel, 255 - getGreen(targetPixel))
 setBlue(targetPixel, 255 - getBlue(targetPixel))

#Takes a picture as an input and scrambles the four quadrants clockwise
def scramble(pic):
 width = getWidth(pic)
 height = getHeight(pic)
 halfWidth = width/2
 halfHeight = height/2
 #Creates the new picture
 newPic = makeEmptyPicture(width, height)
 #Iterates through each pixel of the picture
 for x in range(0, width):
 for y in range(0, height):
 #if the pixel is in the top-left quadrant
 if x < halfWidth and y < halfHeight:
 #shifts pixel to the top-right
 newX = x + halfWidth
 newY = y
 #top-right to bottom-right
 elif x >= halfWidth and y < halfHeight:
 newX = x
 newY = y + halfHeight
 #bottom-left to top-left
 elif x < halfWidth and y >= halfHeight:
 newX = x
 newY = y - halfHeight
 #bottom-right to bottom-left
 elif x >= halfWidth and y >= halfHeight:
 newX = x - halfWidth
 newY = y
 #Gets the color of the current pixel
 color = getColor(getPixel(pic, x, y))
 #Sets the color of the new pixel in the new picture
 setColor((getPixel(newPic, newX, newY)),color)
 #Returns the new picture
 return newPic

#Takes a picture as an input and returns a flipped picture over the X axis
def xFlip(pic):
 width = getWidth(pic)
 height = getHeight(pic)
 #Creates the new picture
 newPic = makeEmptyPicture(width, height)
 #Iterates through each pixel of the picture
 for x in range(width):
 for y in range(height):
 #Gets the current pixel
 pixel = getPixel(pic, x, y)
 #Gets the location of the new pixel from the current pixel
 newPixel = getPixel(newPic, width - x - 1, y)
 #Sets the color of the new pixel to the current pixel
 setColor(newPixel, getColor(pixel))
 #Returns the new picture
 return newPic

#Takes a picture as an input and returns a flipped picture over the Y axis

def yFlip(pic):
 width = getWidth(pic)
 height = getHeight(pic)
 #Creates the new picture
 newPic = makeEmptyPicture(width, height)
 #Iterates through each pixel of the picture
 for x in range(width):
 for y in range(height):
 #Gets the current pixel
 pixel = getPixel(pic, x, y)
 #Gets the location of the new pixel from the current pixel
 newPixel = getPixel(newPic, x, height - y - 1)
 #Sets the color of the new pixel to the current pixel
 setColor(newPixel, getColor(pixel))
 #Returns the new picture
 return newPic

#Takes in a picture and returns the same picture with the top half mirrored
def mirror(pic):
 width = getWidth(pic)
 height = getHeight(pic)
 #Determines the mirror point to be at half of the height of the picture
 mirrorPoint = height / 2
 #Creates new picture with the same dimensions
 newPic = makeEmptyPicture(width, height)
 #Iterates through every pixel in the top half of the picture
 for x in range(width):
 for y in range(mirrorPoint):
 #Gets the pixel from the original picture and its color
 pixel = getPixel(pic, x, y)
 color = getColor(pixel)
 #Calculates the y coordinate of the corresponding pixel in new picture
 newY = height - y - 1
 #Sets the color of the pixel in the top half of the new picture
 setColor(getPixel(newPic, x, y), color)
 #Sets the color of the pixel in the bottom half of the new picture
 setColor(getPixel(newPic, x, newY), color)
 #Returns the new picture
 return newPic

#Scales the input picture by a given factor then pastes the picture onto a new
#picture at a given starting X and Y coordinate
def scale(picIn, picOut, factor, startX, startY):
 #Initializes variables to keep track of input and output coordinates
 inX = 0
 #Loops through the output picture coordinates
 for outX in range(startX, startX + int(getWidth(picIn) * factor)):
 inY = 0
 for outY in range(startY, startY + int(getHeight(picIn) * factor)):
 #Gets color of the pixel at corresponding coordinate in the input picture
 color = getColor(getPixel(picIn, int(inX), int(inY)))
 #Sets the color of the corresponding pixel in the output picture
 setColor(getPixel(picOut, outX, outY), color)
 #Updates the input y-coordinate based on the scaling factor
 inY += 1.0 / factor
 #Updates the input x-coordinate based on the scaling factor
 inX += 1.0 / factor

#Draws lines over a source picture that sets the color of the pixels to white, gray,
#and black based on their color average
def drawBorders(source):
 setExtremes(source, 0, 357, 252, 364, black, gray, white)

 setExtremes(source, 748, 357, 1000, 364, black, gray, white)
 setExtremes(source, 247, 0, 254, 720, black, gray, white)
 setExtremes(source, 747, 0, 754, 720, black, gray, white)

#Sets the color of pixels in a specified reigon of a picture based on their average
#color value
def setExtremes(picture, x1, y1, x2, y2, dark, mid, light):
 #Loops through the specified range of pixels
 for x in range(x1, x2):
 for y in range(y1, y2):
 #Gets the pixel at the current x,y position
 px = getPixel(picture, x, y)
 #Calculates the luminance: average of the color channel values
 luminance = (getRed(px) + getGreen(px) + getBlue(px))/3
 #Sets the color of the pixel based on luminance value
 if luminance < 72:
 setColor(px,dark) #Sets color to dark when luminance is less than 72
 if luminance >= 72:
 #Sets color to mid when luminance is greater than or equal to 72 and
 #less than 92
 setColor(px,mid)
 if luminance >= 92:
 # Sets color to light when luminance is greater than or equal to 92
 setColor(px,light)

#Sets the color of the pixels in the picture based on the
def grayscale(pic):
 width = getWidth(pic)
 height = getHeight(pic)
 #Creates a new empty picture with the same dimensions
 newPic = makeEmptyPicture(width, height)
 #Loops through every pixel in the original picture
 for x in range(width):
 for y in range(height):
 #Gets the pixel at (x,y) in the original picture
 pixel = getPixel(pic, x, y)
 #Gets the corresponding pixel in the new picture
 newPixel = getPixel(newPic, x, y)
 #Calculates the luminance value of the pixel by finding the average value
 #of the color channels
 lum = (getRed(pixel) + getGreen(pixel) + getBlue(pixel))/3
 #Sets the color of the new pixel to grayscale color with RGB values of
 #lum, lum, lum
 setColor(newPixel, makeColor(lum, lum, lum))
 #Returns the new grayscaled picture
 return newPic

#Saturates input picture by the given amount
def saturate(pic, amount):
 width = getWidth(pic)
 height = getHeight(pic)
 #Creates a new empty picture with the same dimensions as the input picture
 newPic = makeEmptyPicture(width, height)
 #Loops over all pixels in the original picture
 for x in range(width):
 for y in range(height):
 #Gets the pixel at the current (x,y) coorinate from the picture
 px = getPixel(pic, x, y)
 #Gets the corresponding pixel from the new picture
 newPx = getPixel(newPic, x, y)
 #Gets the values of pixel's color channels
 r = getRed(px)

 g = getGreen(px)
 b = getBlue(px)
 #Calculates the average of the RGB values
 avg = (r + g + b)/3.0
 #Calculates new values for the color channels by increasing the
 #saturation by the input amount
 r2 = int(avg + (r - avg) * (1.0 + amount))
 g2 = int(avg + (g - avg) * (1.0 + amount))
 b2 = int(avg + (b - avg) * (1.0 + amount))
 #Sets color of corresponding pixel in the new picture to a new color
 #made with the new color values
 setColor(newPx, makeColor(r2, g2, b2))
 #Returns the new picture
 return newPic

#Inverts the color of the given picture
def invert(pic):
 width = getWidth(pic)
 height = getHeight(pic)
 newPic = makeEmptyPicture(width, height)
 for x in range(width):
 for y in range(height):
 px = getPixel(pic, x, y)
 newPx = getPixel(newPic, x, y)
 #Gets the red, green, and blue values of the current pixel
 r = getRed(px)
 g = getGreen(px)
 b = getBlue(px)
 #Inverts colors by subtracting each color from the maximum color value
 r2 = 255 - r
 g2 = 255 - g
 b2 = 255 - b
 #Sets the color of the corresponding pixel in the new picture to the
 #inverted color value
 setColor(newPx, makeColor(r2, g2, b2))
 #Returns the new inverted picture
 return newPic

