ID Otis

Completed Originals

#JD Otis Project 2 3/23/2023

def collage():
#Locates the base picture & signature
source = makePicture (getMediaPath ("photo4 500x720.3jpg"))
#Locates the signature
signature = makePicture (getMediaPath ("JDSignature.png"))
#Creates 5 canvases. A large main canvas, and 4 seperate canvases for
#modification on their own accord
canvas = makeEmptyPicture (1000, 720)
quadrantl = makeEmptyPicture (500, 720)

quadrant?2 = makeEmptyPicture (500, 720)
quadrant3 = makeEmptyPicture (500, 720)
quadrant4 = makeEmptyPicture (500, 720)

#Pastes the base picture in the middle of the main canvas using the scale
#function with a factor of 1, as to not change the size

scale (source, canvas, 1, 251, 0)

#Modifies quadrants individually within their own canvases

#Quadrant one is flipped over the Y axis and grayscaled

quadrantl = yFlip(source)

quadrantl = grayscale (quadrantl)

#Quadrant two is flipped over the X axis and mirrored and saturated
quadrant2 = xFlip (source)

quadrant?2 = mirror (quadrant?2)

quadrant2 = saturate (quadrant2, 1.5)

#Quadrant three has its quadrants shuffled clockwise and has its color inverted
quadrant3 = scramble (source)

quadrant3 = invert (quadrant3)

#Quadrant four is flipped over both its X and Y axis and is saturated down
quadrant4 = yFlip(source)

quadrant4 = xFlip (quadrant4)

quadrant4 = saturate (quadrant4d, 0.5)

#Scales quadrants down to half their size and pastes them onto canvas in the
#empty space

scale (quadrantl, canvas, 0.5, 0, 0)
scale (quadrant2, canvas, 0.5, 750, 0)
scale (quadrant3, canvas, 0.5, 0, 360)
scale (quadrant4, canvas, 0.5, 750, 360)

#Adds color to the fourth quadrant

setExtremes (canvas, 754, 364, 1000, 720, red, orange, yellow)

#Draws borders around each picture. Borders also set extremes to white, gray,
#and black for added color

drawBorders (canvas)

#Adds signature

addSignature (canvas, signature, 125, 0)

#Shows final product

explore (canvas)

def addSignature (picture, signature, x, Vy):
#Adds a signature to the given picture at the specified position.
for i in range (getWidth (signature)) :
for j in range(getHeight (signature)) :
px = getPixel (signature, i, 3J)

Check if the pixel is non-white.
if getRed(px) == 0:
Change corresponding pixel in the picture to a contrasting color.
targetPixel = getPixel (picture, x+i, y+7j)
setRed (targetPixel, 255 - getRed(targetPixel))
setGreen (targetPixel, 255 - getGreen (targetPixel))
setBlue (targetPixel, 255 - getBlue(targetPixel))

#Takes a picture as an input and scrambles the four quadrants clockwise
def scramble (pic):
width = getWidth (pic)
height = getHeight (pic)
halfWidth = width/2
halfHeight = height/2
#Creates the new picture
newPic = makeEmptyPicture (width, height)
#Iterates through each pixel of the picture
for x in range (0, width):
for y in range (0, height):
#if the pixel is in the top-left quadrant
if x < halfWidth and y < halfHeight:
#shifts pixel to the top-right
newX = x + halfWidth
newy =y
#top-right to bottom-right
elif x >= halfWwidth and y < halfHeight:
newX = X
newY = y + halfHeight
#bottom-left to top-left
elif x < halfWidth and y >= halfHeight:
newX = X
newY = y - halfHeight
#bottom-right to bottom-left
elif x >= halfWidth and y >= halfHeight:
newX = x - halfWidth
newY =y
#Gets the color of the current pixel
color = getColor (getPixel (pic, x, V))
#Sets the color of the new pixel in the new picture
setColor ((getPixel (newPic, newX, newY)),color)
#Returns the new picture
return newPic

#Takes a picture as an input and returns a flipped picture over the X axis
def xFlip(pic):
width = getWidth (pic)
height = getHeight (pic)
#Creates the new picture
newPic = makeEmptyPicture (width, height)
#Iterates through each pixel of the picture
for x in range (width) :
for y in range (height):
#Gets the current pixel
pixel = getPixel (pic, x, V)
#Gets the location of the new pixel from the current pixel
newPixel = getPixel (newPic, width - x - 1, v)
#Sets the color of the new pixel to the current pixel
setColor (newPixel, getColor (pixel))
#Returns the new picture
return newPic

#Takes a picture as an input and returns a flipped picture over the Y axis

def yFlip(pic):
width = getWidth (pic)
height = getHeight (pic)
#Creates the new picture
newPic = makeEmptyPicture (width, height)
#Iterates through each pixel of the picture
for x in range (width) :
for y in range (height):
#Gets the current pixel
pixel = getPixel (pic, x, V)
#Gets the location of the new pixel from the current pixel
newPixel = getPixel (newPic, x, height - y - 1)
#Sets the color of the new pixel to the current pixel
setColor (newPixel, getColor (pixel))
#Returns the new picture
return newPic

#Takes in a picture and returns the same picture with the top half mirrored
def mirror (pic):
width = getWidth (pic)
height = getHeight (pic)
#Determines the mirror point to be at half of the height of the picture
mirrorPoint = height / 2
#Creates new picture with the same dimensions
newPic = makeEmptyPicture (width, height)
#Iterates through every pixel in the top half of the picture
for x in range (width) :
for y in range (mirrorPoint):
#Gets the pixel from the original picture and its color
pixel = getPixel (pic, x, V)
color = getColor (pixel)
#Calculates the y coordinate of the corresponding pixel in new picture
newY = height -y -1
#Sets the color of the pixel in the top half of the new picture
setColor (getPixel (newPic, x, y), color)
#Sets the color of the pixel in the bottom half of the new picture
setColor (getPixel (newPic, x, newY), color)
#Returns the new picture
return newPic

#Scales the input picture by a given factor then pastes the picture onto a new
#picture at a given starting X and Y coordinate
def scale(picIn, picOut, factor, startX, starty):
#Initializes variables to keep track of input and output coordinates
inX = 0
#Loops through the output picture coordinates
for outX in range (startX, startX + int(getWidth(picIn) * factor)):
iny = 0
for outY in range (start¥Y, startY + int (getHeight (picIn) * factor)):
#Gets color of the pixel at corresponding coordinate in the input picture
color = getColor(getPixel (picIn, int(inX), int(inY)))
#Sets the color of the corresponding pixel in the output picture
setColor (getPixel (picOut, outX, outY), color)
#Updates the input y-coordinate based on the scaling factor
inyY += 1.0 / factor
#Updates the input x-coordinate based on the scaling factor
inX += 1.0 / factor

#Draws lines over a source picture that sets the color of the pixels to white, gray,
#and black based on their color average
def drawBorders (source) :

setExtremes (source, 0, 357, 252, 364, black, gray, white)

setExtremes (source, 748, 357, 1000, 364, black, gray, white)
setExtremes (source, 247, 0, 254, 720, black, gray, white)
setExtremes (source, 747, 0, 754, 720, black, gray, white)

#Sets the color of pixels in a specified reigon of a picture based on their average
#color value
def setExtremes (picture, x1, yl, x2, y2, dark, mid, light):
#Loops through the specified range of pixels
for x in range(xl, x2):
for y in range(yl, vy2):
#Gets the pixel at the current x,y position
px = getPixel (picture, x, V)
#Calculates the luminance: average of the color channel values
luminance = (getRed (px) + getGreen (px) + getBlue (px))/3
#Sets the color of the pixel based on luminance value
if luminance < 72:
setColor (px,dark) #Sets color to dark when luminance is less than 72
if luminance >= 72:
#Sets color to mid when luminance is greater than or equal to 72 and
#less than 92
setColor (px,mid)
if luminance >= 92:
Sets color to light when luminance is greater than or equal to 92
setColor (px, 1light)

#Sets the color of the pixels in the picture based on the
def grayscale(pic):

width = getWidth (pic)

height = getHeight (pic)

#Creates a new empty picture with the same dimensions

newPic = makeEmptyPicture (width, height)

#Loops through every pixel in the original picture

for x in range (width) :

for y in range (height) :

#Gets the pixel at (x,y) in the original picture
pixel = getPixel (pic, x, V)
#Gets the corresponding pixel in the new picture
newPixel = getPixel (newPic, x, V)
#Calculates the luminance value of the pixel by finding the average value
#of the color channels
lum = (getRed(pixel) + getGreen(pixel) + getBlue(pixel))/3
#Sets the color of the new pixel to grayscale color with RGB values of
#1lum, lum, lum
setColor (newPixel, makeColor (lum, lum, lum))

#Returns the new grayscaled picture

return newPic

#Saturates input picture by the given amount
def saturate(pic, amount):
width = getWidth (pic)
height = getHeight (pic)
#Creates a new empty picture with the same dimensions as the input picture
newPic = makeEmptyPicture (width, height)
#Loops over all pixels in the original picture
for x in range (width) :
for y in range (height) :
#Gets the pixel at the current (x,y) coorinate from the picture
px = getPixel (pic, x, V)
#Gets the corresponding pixel from the new picture
newPx = getPixel (newPic, x, V)
#Gets the values of pixel's color channels
r = getRed (px)

g = getGreen (px)
b = getBlue (px)
#Calculates the average of the RGB values
avg = (r + g + b)/3.0
#Calculates new values for the color channels by increasing the
#saturation by the input amount
r2 = int(avg + (r - avg) * (1.0 + amount))
g2 int(avg + (g - avg) * (1.0 + amount))
b2 = int(avg + (b - avg) * (1.0 + amount))
#Sets color of corresponding pixel in the new picture to a new color
#made with the new color values
setColor (newPx, makeColor(r2, g2, b2))
#Returns the new picture
return newPic

#Inverts the color of the given picture
def invert (pic):

width = getWidth (pic)

height = getHeight (pic)

newPic = makeEmptyPicture (width, height)

for x in range (width) :

for y in range (height):

px = getPixel (pic, x, V)
newPx = getPixel (newPic, x, V)
#Gets the red, green, and blue values of the current pixel
r = getRed (px)
g = getGreen (px)
b = getBlue (px)
#Inverts colors by subtracting each color from the maximum color value
r2 = 255 - r
g2 255 - g
b2 = 255 - b
#Sets the color of the corresponding pixel in the new picture to the
#inverted color value
setColor (newPx, makeColor(r2, g2, b2))

#Returns the new inverted picture

return newPic

